"""Module for SymPy containers (SymPy objects that store other SymPy objects) The containers implemented in this module are subclassed to Basic. They are supposed to work seamlessly within the SymPy framework. """ from collections import OrderedDict from collections.abc import MutableSet from typing import Any, Callable from .basic import Basic from .sorting import default_sort_key, ordered from .sympify import _sympify, sympify, _sympy_converter, SympifyError from sympy.core.kind import Kind from sympy.utilities.iterables import iterable from sympy.utilities.misc import as_int class Tuple(Basic): """ Wrapper around the builtin tuple object. Explanation =========== The Tuple is a subclass of Basic, so that it works well in the SymPy framework. The wrapped tuple is available as self.args, but you can also access elements or slices with [:] syntax. Parameters ========== sympify : bool If ``False``, ``sympify`` is not called on ``args``. This can be used for speedups for very large tuples where the elements are known to already be SymPy objects. Examples ======== >>> from sympy import Tuple, symbols >>> a, b, c, d = symbols('a b c d') >>> Tuple(a, b, c)[1:] (b, c) >>> Tuple(a, b, c).subs(a, d) (d, b, c) """ def __new__(cls, *args, **kwargs): if kwargs.get('sympify', True): args = (sympify(arg) for arg in args) obj = Basic.__new__(cls, *args) return obj def __getitem__(self, i): if isinstance(i, slice): indices = i.indices(len(self)) return Tuple(*(self.args[j] for j in range(*indices))) return self.args[i] def __len__(self): return len(self.args) def __contains__(self, item): return item in self.args def __iter__(self): return iter(self.args) def __add__(self, other): if isinstance(other, Tuple): return Tuple(*(self.args + other.args)) elif isinstance(other, tuple): return Tuple(*(self.args + other)) else: return NotImplemented def __radd__(self, other): if isinstance(other, Tuple): return Tuple(*(other.args + self.args)) elif isinstance(other, tuple): return Tuple(*(other + self.args)) else: return NotImplemented def __mul__(self, other): try: n = as_int(other) except ValueError: raise TypeError("Can't multiply sequence by non-integer of type '%s'" % type(other)) return self.func(*(self.args*n)) __rmul__ = __mul__ def __eq__(self, other): if isinstance(other, Basic): return super().__eq__(other) return self.args == other def __ne__(self, other): if isinstance(other, Basic): return super().__ne__(other) return self.args != other def __hash__(self): return hash(self.args) def _to_mpmath(self, prec): return tuple(a._to_mpmath(prec) for a in self.args) def __lt__(self, other): return _sympify(self.args < other.args) def __le__(self, other): return _sympify(self.args <= other.args) # XXX: Basic defines count() as something different, so we can't # redefine it here. Originally this lead to cse() test failure. def tuple_count(self, value) -> int: """Return number of occurrences of value.""" return self.args.count(value) def index(self, value, start=None, stop=None): """Searches and returns the first index of the value.""" # XXX: One would expect: # # return self.args.index(value, start, stop) # # here. Any trouble with that? Yes: # # >>> (1,).index(1, None, None) # Traceback (most recent call last): # File "", line 1, in # TypeError: slice indices must be integers or None or have an __index__ method # # See: http://bugs.python.org/issue13340 if start is None and stop is None: return self.args.index(value) elif stop is None: return self.args.index(value, start) else: return self.args.index(value, start, stop) @property def kind(self): """ The kind of a Tuple instance. The kind of a Tuple is always of :class:`TupleKind` but parametrised by the number of elements and the kind of each element. Examples ======== >>> from sympy import Tuple, Matrix >>> Tuple(1, 2).kind TupleKind(NumberKind, NumberKind) >>> Tuple(Matrix([1, 2]), 1).kind TupleKind(MatrixKind(NumberKind), NumberKind) >>> Tuple(1, 2).kind.element_kind (NumberKind, NumberKind) See Also ======== sympy.matrices.common.MatrixKind sympy.core.kind.NumberKind """ return TupleKind(*(i.kind for i in self.args)) _sympy_converter[tuple] = lambda tup: Tuple(*tup) def tuple_wrapper(method): """ Decorator that converts any tuple in the function arguments into a Tuple. Explanation =========== The motivation for this is to provide simple user interfaces. The user can call a function with regular tuples in the argument, and the wrapper will convert them to Tuples before handing them to the function. Explanation =========== >>> from sympy.core.containers import tuple_wrapper >>> def f(*args): ... return args >>> g = tuple_wrapper(f) The decorated function g sees only the Tuple argument: >>> g(0, (1, 2), 3) (0, (1, 2), 3) """ def wrap_tuples(*args, **kw_args): newargs = [] for arg in args: if isinstance(arg, tuple): newargs.append(Tuple(*arg)) else: newargs.append(arg) return method(*newargs, **kw_args) return wrap_tuples class Dict(Basic): """ Wrapper around the builtin dict object. Explanation =========== The Dict is a subclass of Basic, so that it works well in the SymPy framework. Because it is immutable, it may be included in sets, but its values must all be given at instantiation and cannot be changed afterwards. Otherwise it behaves identically to the Python dict. Examples ======== >>> from sympy import Dict, Symbol >>> D = Dict({1: 'one', 2: 'two'}) >>> for key in D: ... if key == 1: ... print('%s %s' % (key, D[key])) 1 one The args are sympified so the 1 and 2 are Integers and the values are Symbols. Queries automatically sympify args so the following work: >>> 1 in D True >>> D.has(Symbol('one')) # searches keys and values True >>> 'one' in D # not in the keys False >>> D[1] one """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], (dict, Dict)): items = [Tuple(k, v) for k, v in args[0].items()] elif iterable(args) and all(len(arg) == 2 for arg in args): items = [Tuple(k, v) for k, v in args] else: raise TypeError('Pass Dict args as Dict((k1, v1), ...) or Dict({k1: v1, ...})') elements = frozenset(items) obj = Basic.__new__(cls, *ordered(items)) obj.elements = elements obj._dict = dict(items) # In case Tuple decides it wants to sympify return obj def __getitem__(self, key): """x.__getitem__(y) <==> x[y]""" try: key = _sympify(key) except SympifyError: raise KeyError(key) return self._dict[key] def __setitem__(self, key, value): raise NotImplementedError("SymPy Dicts are Immutable") def items(self): '''Returns a set-like object providing a view on dict's items. ''' return self._dict.items() def keys(self): '''Returns the list of the dict's keys.''' return self._dict.keys() def values(self): '''Returns the list of the dict's values.''' return self._dict.values() def __iter__(self): '''x.__iter__() <==> iter(x)''' return iter(self._dict) def __len__(self): '''x.__len__() <==> len(x)''' return self._dict.__len__() def get(self, key, default=None): '''Returns the value for key if the key is in the dictionary.''' try: key = _sympify(key) except SympifyError: return default return self._dict.get(key, default) def __contains__(self, key): '''D.__contains__(k) -> True if D has a key k, else False''' try: key = _sympify(key) except SympifyError: return False return key in self._dict def __lt__(self, other): return _sympify(self.args < other.args) @property def _sorted_args(self): return tuple(sorted(self.args, key=default_sort_key)) def __eq__(self, other): if isinstance(other, dict): return self == Dict(other) return super().__eq__(other) __hash__ : Callable[[Basic], Any] = Basic.__hash__ # this handles dict, defaultdict, OrderedDict _sympy_converter[dict] = lambda d: Dict(*d.items()) class OrderedSet(MutableSet): def __init__(self, iterable=None): if iterable: self.map = OrderedDict((item, None) for item in iterable) else: self.map = OrderedDict() def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): self.map[key] = None def discard(self, key): self.map.pop(key) def pop(self, last=True): return self.map.popitem(last=last)[0] def __iter__(self): yield from self.map.keys() def __repr__(self): if not self.map: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.map.keys())) def intersection(self, other): return self.__class__([val for val in self if val in other]) def difference(self, other): return self.__class__([val for val in self if val not in other]) def update(self, iterable): for val in iterable: self.add(val) class TupleKind(Kind): """ TupleKind is a subclass of Kind, which is used to define Kind of ``Tuple``. Parameters of TupleKind will be kinds of all the arguments in Tuples, for example Parameters ========== args : tuple(element_kind) element_kind is kind of element. args is tuple of kinds of element Examples ======== >>> from sympy import Tuple >>> Tuple(1, 2).kind TupleKind(NumberKind, NumberKind) >>> Tuple(1, 2).kind.element_kind (NumberKind, NumberKind) See Also ======== sympy.core.kind.NumberKind MatrixKind sympy.sets.sets.SetKind """ def __new__(cls, *args): obj = super().__new__(cls, *args) obj.element_kind = args return obj def __repr__(self): return "TupleKind{}".format(self.element_kind)