from sympy.integrals.transforms import ( mellin_transform, inverse_mellin_transform, fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform, cosine_transform, inverse_cosine_transform, hankel_transform, inverse_hankel_transform, FourierTransform, SineTransform, CosineTransform, InverseFourierTransform, InverseSineTransform, InverseCosineTransform, IntegralTransformError) from sympy.integrals.laplace import ( laplace_transform, inverse_laplace_transform) from sympy.core.function import Function, expand_mul from sympy.core import EulerGamma from sympy.core.numbers import I, Rational, oo, pi from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import re, unpolarify from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import atan, cos, sin, tan from sympy.functions.special.bessel import besseli, besselj, besselk, bessely from sympy.functions.special.delta_functions import Heaviside from sympy.functions.special.error_functions import erf, expint from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import meijerg from sympy.simplify.gammasimp import gammasimp from sympy.simplify.hyperexpand import hyperexpand from sympy.simplify.trigsimp import trigsimp from sympy.testing.pytest import XFAIL, slow, skip, raises from sympy.abc import x, s, a, b, c, d nu, beta, rho = symbols('nu beta rho') def test_undefined_function(): from sympy.integrals.transforms import MellinTransform f = Function('f') assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) assert mellin_transform(f(x) + exp(-x), x, s) == \ (MellinTransform(f(x), x, s) + gamma(s + 1)/s, (0, oo), True) def test_free_symbols(): f = Function('f') assert mellin_transform(f(x), x, s).free_symbols == {s} assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a} def test_as_integral(): from sympy.integrals.integrals import Integral f = Function('f') assert mellin_transform(f(x), x, s).rewrite('Integral') == \ Integral(x**(s - 1)*f(x), (x, 0, oo)) assert fourier_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) assert laplace_transform(f(x), x, s, noconds=True).rewrite('Integral') == \ Integral(f(x)*exp(-s*x), (x, 0, oo)) assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ == "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))" assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) # NOTE this is stuck in risch because meijerint cannot handle it @slow @XFAIL def test_mellin_transform_fail(): skip("Risch takes forever.") MT = mellin_transform bpos = symbols('b', positive=True) # bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S.Half), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)), (-1, Rational(-1, 2)), True) def test_mellin_transform(): from sympy.functions.elementary.miscellaneous import (Max, Min) MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (-1/(nu + s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, 1 - re(beta)), re(beta) > 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) assert MT(abs(1 - x)**(-rho), x, s) == ( 2*sin(pi*rho/2)*gamma(1 - rho)* cos(pi*(s - rho/2))*gamma(s)*gamma(rho-s)/pi, (0, re(rho)), re(rho) < 1) mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(0, -re(a)), Min(1, 1 - re(a))), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S.Half), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True) def test_mellin_transform2(): MT = mellin_transform # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x)/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)/(x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) @slow def test_mellin_transform_bessel(): from sympy.functions.elementary.miscellaneous import Max MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/( gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( -re(a)/2 - S.Half, Rational(1, 4)), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/( gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), ( -re(a)/2, Rational(1, 4)), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S.Half), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S.Half), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S.Half) / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)), (S.Half - re(a), S.Half), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S.Half), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S.Half), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s) / (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)), (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S.Half), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S.Half), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk( a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)* gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (gamma(s)*gamma( a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S.Half), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ re(a)/2 - re(b)/2), S.Half), True) # TODO products of besselk are a mess mt = MT(exp(-x/2)*besselk(a, x/2), x, s) mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True)))) assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/( (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1)) assert mt[1:] == ((Max(-re(a), re(a)), oo), True) # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done # TODO various strange products of special orders @slow def test_expint(): from sympy.functions.elementary.miscellaneous import Max from sympy.functions.special.error_functions import Ci, E1, Si from sympy.simplify.simplify import simplify aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) assert inverse_mellin_transform(gamma(s)/s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma(s/2 + S.Half)/( 2*s*gamma(-s/2 + 1)), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True) assert inverse_mellin_transform( -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)), s, u, (0, 1)).expand() == Ci(sqrt(u)) @slow def test_inverse_mellin_transform(): from sympy.core.function import expand from sympy.functions.elementary.miscellaneous import (Max, Min) from sympy.functions.elementary.trigonometric import cot from sympy.simplify.powsimp import powsimp from sympy.simplify.simplify import simplify IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 nu = symbols('nu', real=True) assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(b**2*(sqrt(1 + x/b**2) + 1)**a + x*(sqrt(1 + x/b**2) + 1 )**(a - 1))/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1) assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) # TODO def mysimp(expr): from sympy.core.function import expand from sympy.simplify.powsimp import powsimp from sympy.simplify.simplify import logcombine return expand( powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1)] # test passing cot assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s) / (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, Rational(1, 4)))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S.Half))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S.Half))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S.Half))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \ besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) # TODO more # for coverage assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1) def test_fourier_transform(): from sympy.core.function import (expand, expand_complex, expand_trig) from sympy.polys.polytools import factor from sympy.simplify.simplify import simplify FT = fourier_transform IFT = inverse_fourier_transform def simp(x): return simplify(expand_trig(expand_complex(expand(x)))) def sinc(x): return sin(pi*x)/(pi*x) k = symbols('k', real=True) f = Function("f") # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) a = symbols('a', positive=True) b = symbols('b', positive=True) posk = symbols('posk', positive=True) # Test unevaluated form assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) assert inverse_fourier_transform( f(k), k, x) == InverseFourierTransform(f(k), k, x) # basic examples from wikipedia assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a # TODO IFT is a *mess* assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a # TODO IFT assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k) # NOTE: the ift comes out in pieces assert IFT(1/(a + 2*pi*I*x), x, posk, noconds=False) == (exp(-a*posk), True) assert IFT(1/(a + 2*pi*I*x), x, -posk, noconds=False) == (0, True) assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), noconds=False) == (0, True) # TODO IFT without factoring comes out as meijer g assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k)**2 assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ b/(b**2 + (a + 2*I*pi*k)**2) assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) # TODO IFT (comes out as meijer G) # TODO besselj(n, x), n an integer > 0 actually can be done... # TODO are there other common transforms (no distributions!)? def test_sine_transform(): t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) assert inverse_sine_transform( f(w), w, t) == InverseSineTransform(f(w), w, t) assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w) assert sine_transform(t**(-a), t, w) == 2**( -a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) assert inverse_sine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a) assert sine_transform( exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) assert inverse_sine_transform( sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert sine_transform( log(t)/t, t, w) == sqrt(2)*sqrt(pi)*-(log(w**2) + 2*EulerGamma)/4 assert sine_transform( t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)) assert inverse_sine_transform( sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2) def test_cosine_transform(): from sympy.functions.special.error_functions import (Ci, Si) t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform( f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert cosine_transform(1/( a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a) assert cosine_transform(t**( -a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) assert inverse_cosine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a) assert cosine_transform( exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) assert inverse_cosine_transform( sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2)) assert cosine_transform(1/(a + t), t, w) == sqrt(2)*( (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi) assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), ( (S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( ((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) def test_hankel_transform(): r = Symbol("r") k = Symbol("k") nu = Symbol("nu") m = Symbol("m") a = symbols("a") assert hankel_transform(1/r, r, k, 0) == 1/k assert inverse_hankel_transform(1/k, k, r, 0) == 1/r assert hankel_transform( 1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) assert inverse_hankel_transform( 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) assert hankel_transform(1/r**m, r, k, nu) == ( 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)) assert inverse_hankel_transform(2**(-m + 1)*k**( m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( 3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi) assert inverse_hankel_transform( 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma( nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r) def test_issue_7181(): assert mellin_transform(1/(1 - x), x, s) != None def test_issue_8882(): # This is the original test. # from sympy import diff, Integral, integrate # r = Symbol('r') # psi = 1/r*sin(r)*exp(-(a0*r)) # h = -1/2*diff(psi, r, r) - 1/r*psi # f = 4*pi*psi*h*r**2 # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True # To save time, only the critical part is included. F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \ sin(s*atan(sqrt(1/a**2)/2))*gamma(s) raises(IntegralTransformError, lambda: inverse_mellin_transform(F, s, x, (-1, oo), **{'as_meijerg': True, 'needeval': True})) def test_issue_12591(): x, y = symbols("x y", real=True) assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)