"""Implementation of the Kronecker product""" from functools import reduce from math import prod from sympy.core import Mul, sympify from sympy.functions import adjoint from sympy.matrices.common import ShapeError from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.expressions.transpose import transpose from sympy.matrices.expressions.special import Identity from sympy.matrices.matrices import MatrixBase from sympy.strategies import ( canon, condition, distribute, do_one, exhaust, flatten, typed, unpack) from sympy.strategies.traverse import bottom_up from sympy.utilities import sift from .matadd import MatAdd from .matmul import MatMul from .matpow import MatPow def kronecker_product(*matrices): """ The Kronecker product of two or more arguments. This computes the explicit Kronecker product for subclasses of ``MatrixBase`` i.e. explicit matrices. Otherwise, a symbolic ``KroneckerProduct`` object is returned. Examples ======== For ``MatrixSymbol`` arguments a ``KroneckerProduct`` object is returned. Elements of this matrix can be obtained by indexing, or for MatrixSymbols with known dimension the explicit matrix can be obtained with ``.as_explicit()`` >>> from sympy import kronecker_product, MatrixSymbol >>> A = MatrixSymbol('A', 2, 2) >>> B = MatrixSymbol('B', 2, 2) >>> kronecker_product(A) A >>> kronecker_product(A, B) KroneckerProduct(A, B) >>> kronecker_product(A, B)[0, 1] A[0, 0]*B[0, 1] >>> kronecker_product(A, B).as_explicit() Matrix([ [A[0, 0]*B[0, 0], A[0, 0]*B[0, 1], A[0, 1]*B[0, 0], A[0, 1]*B[0, 1]], [A[0, 0]*B[1, 0], A[0, 0]*B[1, 1], A[0, 1]*B[1, 0], A[0, 1]*B[1, 1]], [A[1, 0]*B[0, 0], A[1, 0]*B[0, 1], A[1, 1]*B[0, 0], A[1, 1]*B[0, 1]], [A[1, 0]*B[1, 0], A[1, 0]*B[1, 1], A[1, 1]*B[1, 0], A[1, 1]*B[1, 1]]]) For explicit matrices the Kronecker product is returned as a Matrix >>> from sympy import Matrix, kronecker_product >>> sigma_x = Matrix([ ... [0, 1], ... [1, 0]]) ... >>> Isigma_y = Matrix([ ... [0, 1], ... [-1, 0]]) ... >>> kronecker_product(sigma_x, Isigma_y) Matrix([ [ 0, 0, 0, 1], [ 0, 0, -1, 0], [ 0, 1, 0, 0], [-1, 0, 0, 0]]) See Also ======== KroneckerProduct """ if not matrices: raise TypeError("Empty Kronecker product is undefined") if len(matrices) == 1: return matrices[0] else: return KroneckerProduct(*matrices).doit() class KroneckerProduct(MatrixExpr): """ The Kronecker product of two or more arguments. The Kronecker product is a non-commutative product of matrices. Given two matrices of dimension (m, n) and (s, t) it produces a matrix of dimension (m s, n t). This is a symbolic object that simply stores its argument without evaluating it. To actually compute the product, use the function ``kronecker_product()`` or call the ``.doit()`` or ``.as_explicit()`` methods. >>> from sympy import KroneckerProduct, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> isinstance(KroneckerProduct(A, B), KroneckerProduct) True """ is_KroneckerProduct = True def __new__(cls, *args, check=True): args = list(map(sympify, args)) if all(a.is_Identity for a in args): ret = Identity(prod(a.rows for a in args)) if all(isinstance(a, MatrixBase) for a in args): return ret.as_explicit() else: return ret if check: validate(*args) return super().__new__(cls, *args) @property def shape(self): rows, cols = self.args[0].shape for mat in self.args[1:]: rows *= mat.rows cols *= mat.cols return (rows, cols) def _entry(self, i, j, **kwargs): result = 1 for mat in reversed(self.args): i, m = divmod(i, mat.rows) j, n = divmod(j, mat.cols) result *= mat[m, n] return result def _eval_adjoint(self): return KroneckerProduct(*list(map(adjoint, self.args))).doit() def _eval_conjugate(self): return KroneckerProduct(*[a.conjugate() for a in self.args]).doit() def _eval_transpose(self): return KroneckerProduct(*list(map(transpose, self.args))).doit() def _eval_trace(self): from .trace import trace return Mul(*[trace(a) for a in self.args]) def _eval_determinant(self): from .determinant import det, Determinant if not all(a.is_square for a in self.args): return Determinant(self) m = self.rows return Mul(*[det(a)**(m/a.rows) for a in self.args]) def _eval_inverse(self): try: return KroneckerProduct(*[a.inverse() for a in self.args]) except ShapeError: from sympy.matrices.expressions.inverse import Inverse return Inverse(self) def structurally_equal(self, other): '''Determine whether two matrices have the same Kronecker product structure Examples ======== >>> from sympy import KroneckerProduct, MatrixSymbol, symbols >>> m, n = symbols(r'm, n', integer=True) >>> A = MatrixSymbol('A', m, m) >>> B = MatrixSymbol('B', n, n) >>> C = MatrixSymbol('C', m, m) >>> D = MatrixSymbol('D', n, n) >>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(C, D)) True >>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(D, C)) False >>> KroneckerProduct(A, B).structurally_equal(C) False ''' # Inspired by BlockMatrix return (isinstance(other, KroneckerProduct) and self.shape == other.shape and len(self.args) == len(other.args) and all(a.shape == b.shape for (a, b) in zip(self.args, other.args))) def has_matching_shape(self, other): '''Determine whether two matrices have the appropriate structure to bring matrix multiplication inside the KroneckerProdut Examples ======== >>> from sympy import KroneckerProduct, MatrixSymbol, symbols >>> m, n = symbols(r'm, n', integer=True) >>> A = MatrixSymbol('A', m, n) >>> B = MatrixSymbol('B', n, m) >>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(B, A)) True >>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(A, B)) False >>> KroneckerProduct(A, B).has_matching_shape(A) False ''' return (isinstance(other, KroneckerProduct) and self.cols == other.rows and len(self.args) == len(other.args) and all(a.cols == b.rows for (a, b) in zip(self.args, other.args))) def _eval_expand_kroneckerproduct(self, **hints): return flatten(canon(typed({KroneckerProduct: distribute(KroneckerProduct, MatAdd)}))(self)) def _kronecker_add(self, other): if self.structurally_equal(other): return self.__class__(*[a + b for (a, b) in zip(self.args, other.args)]) else: return self + other def _kronecker_mul(self, other): if self.has_matching_shape(other): return self.__class__(*[a*b for (a, b) in zip(self.args, other.args)]) else: return self * other def doit(self, **hints): deep = hints.get('deep', True) if deep: args = [arg.doit(**hints) for arg in self.args] else: args = self.args return canonicalize(KroneckerProduct(*args)) def validate(*args): if not all(arg.is_Matrix for arg in args): raise TypeError("Mix of Matrix and Scalar symbols") # rules def extract_commutative(kron): c_part = [] nc_part = [] for arg in kron.args: c, nc = arg.args_cnc() c_part.extend(c) nc_part.append(Mul._from_args(nc)) c_part = Mul(*c_part) if c_part != 1: return c_part*KroneckerProduct(*nc_part) return kron def matrix_kronecker_product(*matrices): """Compute the Kronecker product of a sequence of SymPy Matrices. This is the standard Kronecker product of matrices [1]. Parameters ========== matrices : tuple of MatrixBase instances The matrices to take the Kronecker product of. Returns ======= matrix : MatrixBase The Kronecker product matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.matrices.expressions.kronecker import ( ... matrix_kronecker_product) >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> matrix_kronecker_product(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> matrix_kronecker_product(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) References ========== .. [1] https://en.wikipedia.org/wiki/Kronecker_product """ # Make sure we have a sequence of Matrices if not all(isinstance(m, MatrixBase) for m in matrices): raise TypeError( 'Sequence of Matrices expected, got: %s' % repr(matrices) ) # Pull out the first element in the product. matrix_expansion = matrices[-1] # Do the kronecker product working from right to left. for mat in reversed(matrices[:-1]): rows = mat.rows cols = mat.cols # Go through each row appending kronecker product to. # running matrix_expansion. for i in range(rows): start = matrix_expansion*mat[i*cols] # Go through each column joining each item for j in range(cols - 1): start = start.row_join( matrix_expansion*mat[i*cols + j + 1] ) # If this is the first element, make it the start of the # new row. if i == 0: next = start else: next = next.col_join(start) matrix_expansion = next MatrixClass = max(matrices, key=lambda M: M._class_priority).__class__ if isinstance(matrix_expansion, MatrixClass): return matrix_expansion else: return MatrixClass(matrix_expansion) def explicit_kronecker_product(kron): # Make sure we have a sequence of Matrices if not all(isinstance(m, MatrixBase) for m in kron.args): return kron return matrix_kronecker_product(*kron.args) rules = (unpack, explicit_kronecker_product, flatten, extract_commutative) canonicalize = exhaust(condition(lambda x: isinstance(x, KroneckerProduct), do_one(*rules))) def _kronecker_dims_key(expr): if isinstance(expr, KroneckerProduct): return tuple(a.shape for a in expr.args) else: return (0,) def kronecker_mat_add(expr): args = sift(expr.args, _kronecker_dims_key) nonkrons = args.pop((0,), None) if not args: return expr krons = [reduce(lambda x, y: x._kronecker_add(y), group) for group in args.values()] if not nonkrons: return MatAdd(*krons) else: return MatAdd(*krons) + nonkrons def kronecker_mat_mul(expr): # modified from block matrix code factor, matrices = expr.as_coeff_matrices() i = 0 while i < len(matrices) - 1: A, B = matrices[i:i+2] if isinstance(A, KroneckerProduct) and isinstance(B, KroneckerProduct): matrices[i] = A._kronecker_mul(B) matrices.pop(i+1) else: i += 1 return factor*MatMul(*matrices) def kronecker_mat_pow(expr): if isinstance(expr.base, KroneckerProduct) and all(a.is_square for a in expr.base.args): return KroneckerProduct(*[MatPow(a, expr.exp) for a in expr.base.args]) else: return expr def combine_kronecker(expr): """Combine KronekeckerProduct with expression. If possible write operations on KroneckerProducts of compatible shapes as a single KroneckerProduct. Examples ======== >>> from sympy.matrices.expressions import combine_kronecker >>> from sympy import MatrixSymbol, KroneckerProduct, symbols >>> m, n = symbols(r'm, n', integer=True) >>> A = MatrixSymbol('A', m, n) >>> B = MatrixSymbol('B', n, m) >>> combine_kronecker(KroneckerProduct(A, B)*KroneckerProduct(B, A)) KroneckerProduct(A*B, B*A) >>> combine_kronecker(KroneckerProduct(A, B)+KroneckerProduct(B.T, A.T)) KroneckerProduct(A + B.T, B + A.T) >>> C = MatrixSymbol('C', n, n) >>> D = MatrixSymbol('D', m, m) >>> combine_kronecker(KroneckerProduct(C, D)**m) KroneckerProduct(C**m, D**m) """ def haskron(expr): return isinstance(expr, MatrixExpr) and expr.has(KroneckerProduct) rule = exhaust( bottom_up(exhaust(condition(haskron, typed( {MatAdd: kronecker_mat_add, MatMul: kronecker_mat_mul, MatPow: kronecker_mat_pow}))))) result = rule(expr) doit = getattr(result, 'doit', None) if doit is not None: return doit() else: return result