from sympy.core.mod import Mod from sympy.core.numbers import I from sympy.core.symbol import symbols from sympy.functions.elementary.integers import floor from sympy.matrices.dense import (Matrix, eye) from sympy.matrices import MatrixSymbol, Identity from sympy.matrices.expressions import det, trace from sympy.matrices.expressions.kronecker import (KroneckerProduct, kronecker_product, combine_kronecker) mat1 = Matrix([[1, 2 * I], [1 + I, 3]]) mat2 = Matrix([[2 * I, 3], [4 * I, 2]]) i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x') Z = MatrixSymbol('Z', n, n) W = MatrixSymbol('W', m, m) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, k) def test_KroneckerProduct(): assert isinstance(KroneckerProduct(A, B), KroneckerProduct) assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B) assert KroneckerProduct(A, C).shape == (n*m, m*k) assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity def test_KroneckerProduct_identity(): assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n) assert KroneckerProduct(eye(2), eye(3)) == eye(6) def test_KroneckerProduct_explicit(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) kp = KroneckerProduct(X, Y) assert kp.shape == (4, 4) assert kp.as_explicit() == Matrix( [ [X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]], [X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]], [X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]], [X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]] ] ) def test_tensor_product_adjoint(): assert KroneckerProduct(I*A, B).adjoint() == \ -I*KroneckerProduct(A.adjoint(), B.adjoint()) assert KroneckerProduct(mat1, mat2).adjoint() == \ kronecker_product(mat1.adjoint(), mat2.adjoint()) def test_tensor_product_conjugate(): assert KroneckerProduct(I*A, B).conjugate() == \ -I*KroneckerProduct(A.conjugate(), B.conjugate()) assert KroneckerProduct(mat1, mat2).conjugate() == \ kronecker_product(mat1.conjugate(), mat2.conjugate()) def test_tensor_product_transpose(): assert KroneckerProduct(I*A, B).transpose() == \ I*KroneckerProduct(A.transpose(), B.transpose()) assert KroneckerProduct(mat1, mat2).transpose() == \ kronecker_product(mat1.transpose(), mat2.transpose()) def test_KroneckerProduct_is_associative(): assert kronecker_product(A, kronecker_product( B, C)) == kronecker_product(kronecker_product(A, B), C) assert kronecker_product(A, kronecker_product( B, C)) == KroneckerProduct(A, B, C) def test_KroneckerProduct_is_bilinear(): assert kronecker_product(x*A, B) == x*kronecker_product(A, B) assert kronecker_product(A, x*B) == x*kronecker_product(A, B) def test_KroneckerProduct_determinant(): kp = kronecker_product(W, Z) assert det(kp) == det(W)**n * det(Z)**m def test_KroneckerProduct_trace(): kp = kronecker_product(W, Z) assert trace(kp) == trace(W)*trace(Z) def test_KroneckerProduct_isnt_commutative(): assert KroneckerProduct(A, B) != KroneckerProduct(B, A) assert KroneckerProduct(A, B).is_commutative is False def test_KroneckerProduct_extracts_commutative_part(): assert kronecker_product(x * A, 2 * B) == x * \ 2 * KroneckerProduct(A, B) def test_KroneckerProduct_inverse(): kp = kronecker_product(W, Z) assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse()) def test_KroneckerProduct_combine_add(): kp1 = kronecker_product(A, B) kp2 = kronecker_product(C, W) assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W) def test_KroneckerProduct_combine_mul(): X = MatrixSymbol('X', m, n) Y = MatrixSymbol('Y', m, n) kp1 = kronecker_product(A, X) kp2 = kronecker_product(B, Y) assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y) def test_KroneckerProduct_combine_pow(): X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', n, n) assert combine_kronecker(KroneckerProduct( X, Y)**x) == KroneckerProduct(X**x, Y**x) assert combine_kronecker(x * KroneckerProduct(X, Y) ** 2) == x * KroneckerProduct(X**2, Y**2) assert combine_kronecker( x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B) # cannot simplify because of non-square arguments to kronecker product: assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m def test_KroneckerProduct_expand(): X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', n, n) assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \ KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \ KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z) def test_KroneckerProduct_entry(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', o, p) assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]