from sympy.core.backend import (symbols, Matrix, cos, sin, atan, sqrt, Rational, _simplify_matrix) from sympy.core.sympify import sympify from sympy.simplify.simplify import simplify from sympy.solvers.solvers import solve from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ LagrangesMethod from sympy.testing.pytest import slow @slow def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) (fr, fr_star) = KM.kanes_equations(BL, FL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict()) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qdots.keys(): assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8} def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m*g*N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) (fr, frstar) = KM.kanes_equations([pP], [(P, R)]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_kane_nonminimal(): # Create generalized coordinates and speeds for this non-minimal realization # q1, q2 = N.x and N.y coordinates of pendulum # u1, u2 = N.x and N.y velocities of pendulum q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) u1, u2 = dynamicsymbols('u1:3') u1d, u2d = dynamicsymbols('u1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Locate the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) pP = Particle('pP', P, m) # Calculate the kinematic differential equations kde = Matrix([q1d - u1, q2d - u2]) dq_dict = solve(kde, [q1d, q2d]) # Set velocity of point P P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) # Configuration constraint is length of pendulum f_c = Matrix([P.pos_from(pN).magnitude() - L]) # Velocity constraint is that the velocity in the A.x direction is # always zero (the pendulum is never getting longer). f_v = Matrix([P.vel(N).express(A).dot(A.x)]) f_v.simplify() # Acceleration constraints is the time derivative of the velocity constraint f_a = f_v.diff(t) f_a.simplify() # Input the force resultant at P R = m*g*N.x # Derive the equations of motion using the KanesMethod class. KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], u_dependent=[u1], configuration_constraints=f_c, velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) (fr, frstar) = KM.kanes_equations([pP], [(P, R)]) # Set the operating point to be straight down, and non-moving q_op = {q1: L, q2: 0} u_op = {u1: 0, u2: 0} ud_op = {u1d: 0, u2d: 0} A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, q1d*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert _simplify_matrix(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True) assert _simplify_matrix(A) == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6*q3d, 0], [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], [0, 0, 0, 0, 0, 0]]) assert A == sol