"""A cache for storing small matrices in multiple formats.""" from sympy.core.numbers import (I, Rational, pi) from sympy.core.power import Pow from sympy.functions.elementary.exponential import exp from sympy.matrices.dense import Matrix from sympy.physics.quantum.matrixutils import ( to_sympy, to_numpy, to_scipy_sparse ) class MatrixCache: """A cache for small matrices in different formats. This class takes small matrices in the standard ``sympy.Matrix`` format, and then converts these to both ``numpy.matrix`` and ``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for future recovery. """ def __init__(self, dtype='complex'): self._cache = {} self.dtype = dtype def cache_matrix(self, name, m): """Cache a matrix by its name. Parameters ---------- name : str A descriptive name for the matrix, like "identity2". m : list of lists The raw matrix data as a SymPy Matrix. """ try: self._sympy_matrix(name, m) except ImportError: pass try: self._numpy_matrix(name, m) except ImportError: pass try: self._scipy_sparse_matrix(name, m) except ImportError: pass def get_matrix(self, name, format): """Get a cached matrix by name and format. Parameters ---------- name : str A descriptive name for the matrix, like "identity2". format : str The format desired ('sympy', 'numpy', 'scipy.sparse') """ m = self._cache.get((name, format)) if m is not None: return m raise NotImplementedError( 'Matrix with name %s and format %s is not available.' % (name, format) ) def _store_matrix(self, name, format, m): self._cache[(name, format)] = m def _sympy_matrix(self, name, m): self._store_matrix(name, 'sympy', to_sympy(m)) def _numpy_matrix(self, name, m): m = to_numpy(m, dtype=self.dtype) self._store_matrix(name, 'numpy', m) def _scipy_sparse_matrix(self, name, m): # TODO: explore different sparse formats. But sparse.kron will use # coo in most cases, so we use that here. m = to_scipy_sparse(m, dtype=self.dtype) self._store_matrix(name, 'scipy.sparse', m) sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False) # Save the common matrices that we will need matrix_cache = MatrixCache() matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]])) matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) # |1><1| matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) # |0><0| matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) # |1><0| matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) # |0><1| matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]])) matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]])) matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]])) matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]])) matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]])) matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]])) matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]])) matrix_cache.cache_matrix( 'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])) matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]])) matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]]))