"""Minimal polynomials for algebraic numbers.""" from functools import reduce from sympy.core.add import Add from sympy.core.exprtools import Factors from sympy.core.function import expand_mul, expand_multinomial, _mexpand from sympy.core.mul import Mul from sympy.core.numbers import (I, Rational, pi, _illegal) from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.core.traversal import preorder_traversal from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import cos, sin, tan from sympy.ntheory.factor_ import divisors from sympy.utilities.iterables import subsets from sympy.polys.domains import ZZ, QQ, FractionField from sympy.polys.orthopolys import dup_chebyshevt from sympy.polys.polyerrors import ( NotAlgebraic, GeneratorsError, ) from sympy.polys.polytools import ( Poly, PurePoly, invert, factor_list, groebner, resultant, degree, poly_from_expr, parallel_poly_from_expr, lcm ) from sympy.polys.polyutils import dict_from_expr, expr_from_dict from sympy.polys.ring_series import rs_compose_add from sympy.polys.rings import ring from sympy.polys.rootoftools import CRootOf from sympy.polys.specialpolys import cyclotomic_poly from sympy.utilities import ( numbered_symbols, public, sift ) def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5): """ Return a factor having root ``v`` It is assumed that one of the factors has root ``v``. """ if isinstance(factors[0], tuple): factors = [f[0] for f in factors] if len(factors) == 1: return factors[0] prec1 = 10 points = {} symbols = dom.symbols if hasattr(dom, 'symbols') else [] while prec1 <= prec: # when dealing with non-Rational numbers we usually evaluate # with `subs` argument but we only need a ballpark evaluation fe = [f.as_expr().xreplace({x:v}) for f in factors] if v.is_number: fe = [f.n(prec) for f in fe] # assign integers [0, n) to symbols (if any) for n in subsets(range(bound), k=len(symbols), repetition=True): for s, i in zip(symbols, n): points[s] = i # evaluate the expression at these points candidates = [(abs(f.subs(points).n(prec1)), i) for i,f in enumerate(fe)] # if we get invalid numbers (e.g. from division by zero) # we try again if any(i in _illegal for i, _ in candidates): continue # find the smallest two -- if they differ significantly # then we assume we have found the factor that becomes # 0 when v is substituted into it can = sorted(candidates) (a, ix), (b, _) = can[:2] if b > a * 10**6: # XXX what to use? return factors[ix] prec1 *= 2 raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v) def _is_sum_surds(p): args = p.args if p.is_Add else [p] for y in args: if not ((y**2).is_Rational and y.is_extended_real): return False return True def _separate_sq(p): """ helper function for ``_minimal_polynomial_sq`` It selects a rational ``g`` such that the polynomial ``p`` consists of a sum of terms whose surds squared have gcd equal to ``g`` and a sum of terms with surds squared prime with ``g``; then it takes the field norm to eliminate ``sqrt(g)`` See simplify.simplify.split_surds and polytools.sqf_norm. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x >>> from sympy.polys.numberfields.minpoly import _separate_sq >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7) >>> p = _separate_sq(p); p -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8 >>> p = _separate_sq(p); p -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20 >>> p = _separate_sq(p); p -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400 """ def is_sqrt(expr): return expr.is_Pow and expr.exp is S.Half # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)] a = [] for y in p.args: if not y.is_Mul: if is_sqrt(y): a.append((S.One, y**2)) elif y.is_Atom: a.append((y, S.One)) elif y.is_Pow and y.exp.is_integer: a.append((y, S.One)) else: raise NotImplementedError else: T, F = sift(y.args, is_sqrt, binary=True) a.append((Mul(*F), Mul(*T)**2)) a.sort(key=lambda z: z[1]) if a[-1][1] is S.One: # there are no surds return p surds = [z for y, z in a] for i in range(len(surds)): if surds[i] != 1: break from sympy.simplify.radsimp import _split_gcd g, b1, b2 = _split_gcd(*surds[i:]) a1 = [] a2 = [] for y, z in a: if z in b1: a1.append(y*z**S.Half) else: a2.append(y*z**S.Half) p1 = Add(*a1) p2 = Add(*a2) p = _mexpand(p1**2) - _mexpand(p2**2) return p def _minimal_polynomial_sq(p, n, x): """ Returns the minimal polynomial for the ``nth-root`` of a sum of surds or ``None`` if it fails. Parameters ========== p : sum of surds n : positive integer x : variable of the returned polynomial Examples ======== >>> from sympy.polys.numberfields.minpoly import _minimal_polynomial_sq >>> from sympy import sqrt >>> from sympy.abc import x >>> q = 1 + sqrt(2) + sqrt(3) >>> _minimal_polynomial_sq(q, 3, x) x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8 """ p = sympify(p) n = sympify(n) if not n.is_Integer or not n > 0 or not _is_sum_surds(p): return None pn = p**Rational(1, n) # eliminate the square roots p -= x while 1: p1 = _separate_sq(p) if p1 is p: p = p1.subs({x:x**n}) break else: p = p1 # _separate_sq eliminates field extensions in a minimal way, so that # if n = 1 then `p = constant*(minimal_polynomial(p))` # if n > 1 it contains the minimal polynomial as a factor. if n == 1: p1 = Poly(p) if p.coeff(x**p1.degree(x)) < 0: p = -p p = p.primitive()[1] return p # by construction `p` has root `pn` # the minimal polynomial is the factor vanishing in x = pn factors = factor_list(p)[1] result = _choose_factor(factors, x, pn) return result def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None): """ return the minimal polynomial for ``op(ex1, ex2)`` Parameters ========== op : operation ``Add`` or ``Mul`` ex1, ex2 : expressions for the algebraic elements x : indeterminate of the polynomials dom: ground domain mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None Examples ======== >>> from sympy import sqrt, Add, Mul, QQ >>> from sympy.polys.numberfields.minpoly import _minpoly_op_algebraic_element >>> from sympy.abc import x, y >>> p1 = sqrt(sqrt(2) + 1) >>> p2 = sqrt(sqrt(2) - 1) >>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ) x - 1 >>> q1 = sqrt(y) >>> q2 = 1 / y >>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y)) x**2*y**2 - 2*x*y - y**3 + 1 References ========== .. [1] https://en.wikipedia.org/wiki/Resultant .. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638 "Degrees of sums in a separable field extension". """ y = Dummy(str(x)) if mp1 is None: mp1 = _minpoly_compose(ex1, x, dom) if mp2 is None: mp2 = _minpoly_compose(ex2, y, dom) else: mp2 = mp2.subs({x: y}) if op is Add: # mp1a = mp1.subs({x: x - y}) if dom == QQ: R, X = ring('X', QQ) p1 = R(dict_from_expr(mp1)[0]) p2 = R(dict_from_expr(mp2)[0]) else: (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y) r = p1.compose(p2) mp1a = r.as_expr() elif op is Mul: mp1a = _muly(mp1, x, y) else: raise NotImplementedError('option not available') if op is Mul or dom != QQ: r = resultant(mp1a, mp2, gens=[y, x]) else: r = rs_compose_add(p1, p2) r = expr_from_dict(r.as_expr_dict(), x) deg1 = degree(mp1, x) deg2 = degree(mp2, y) if op is Mul and deg1 == 1 or deg2 == 1: # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a; # r = mp2(x - a), so that `r` is irreducible return r r = Poly(r, x, domain=dom) _, factors = r.factor_list() res = _choose_factor(factors, x, op(ex1, ex2), dom) return res.as_expr() def _invertx(p, x): """ Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))`` """ p1 = poly_from_expr(p, x)[0] n = degree(p1) a = [c * x**(n - i) for (i,), c in p1.terms()] return Add(*a) def _muly(p, x, y): """ Returns ``_mexpand(y**deg*p.subs({x:x / y}))`` """ p1 = poly_from_expr(p, x)[0] n = degree(p1) a = [c * x**i * y**(n - i) for (i,), c in p1.terms()] return Add(*a) def _minpoly_pow(ex, pw, x, dom, mp=None): """ Returns ``minpoly(ex**pw, x)`` Parameters ========== ex : algebraic element pw : rational number x : indeterminate of the polynomial dom: ground domain mp : minimal polynomial of ``p`` Examples ======== >>> from sympy import sqrt, QQ, Rational >>> from sympy.polys.numberfields.minpoly import _minpoly_pow, minpoly >>> from sympy.abc import x, y >>> p = sqrt(1 + sqrt(2)) >>> _minpoly_pow(p, 2, x, QQ) x**2 - 2*x - 1 >>> minpoly(p**2, x) x**2 - 2*x - 1 >>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y)) x**3 - y >>> minpoly(y**Rational(1, 3), x) x**3 - y """ pw = sympify(pw) if not mp: mp = _minpoly_compose(ex, x, dom) if not pw.is_rational: raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) if pw < 0: if mp == x: raise ZeroDivisionError('%s is zero' % ex) mp = _invertx(mp, x) if pw == -1: return mp pw = -pw ex = 1/ex y = Dummy(str(x)) mp = mp.subs({x: y}) n, d = pw.as_numer_denom() res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom) _, factors = res.factor_list() res = _choose_factor(factors, x, ex**pw, dom) return res.as_expr() def _minpoly_add(x, dom, *a): """ returns ``minpoly(Add(*a), dom, x)`` """ mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom) p = a[0] + a[1] for px in a[2:]: mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp) p = p + px return mp def _minpoly_mul(x, dom, *a): """ returns ``minpoly(Mul(*a), dom, x)`` """ mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom) p = a[0] * a[1] for px in a[2:]: mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp) p = p * px return mp def _minpoly_sin(ex, x): """ Returns the minimal polynomial of ``sin(ex)`` see https://mathworld.wolfram.com/TrigonometryAngles.html """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: n = c.q q = sympify(n) if q.is_prime: # for a = pi*p/q with q odd prime, using chebyshevt # write sin(q*a) = mp(sin(a))*sin(a); # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1 a = dup_chebyshevt(n, ZZ) return Add(*[x**(n - i - 1)*a[i] for i in range(n)]) if c.p == 1: if q == 9: return 64*x**6 - 96*x**4 + 36*x**2 - 3 if n % 2 == 1: # for a = pi*p/q with q odd, use # sin(q*a) = 0 to see that the minimal polynomial must be # a factor of dup_chebyshevt(n, ZZ) a = dup_chebyshevt(n, ZZ) a = [x**(n - i)*a[i] for i in range(n + 1)] r = Add(*a) _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res expr = ((1 - cos(2*c*pi))/2)**S.Half res = _minpoly_compose(expr, x, QQ) return res raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) def _minpoly_cos(ex, x): """ Returns the minimal polynomial of ``cos(ex)`` see https://mathworld.wolfram.com/TrigonometryAngles.html """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: if c.p == 1: if c.q == 7: return 8*x**3 - 4*x**2 - 4*x + 1 if c.q == 9: return 8*x**3 - 6*x - 1 elif c.p == 2: q = sympify(c.q) if q.is_prime: s = _minpoly_sin(ex, x) return _mexpand(s.subs({x:sqrt((1 - x)/2)})) # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p n = int(c.q) a = dup_chebyshevt(n, ZZ) a = [x**(n - i)*a[i] for i in range(n + 1)] r = Add(*a) - (-1)**c.p _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) def _minpoly_tan(ex, x): """ Returns the minimal polynomial of ``tan(ex)`` see https://github.com/sympy/sympy/issues/21430 """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: c = c * 2 n = int(c.q) a = n if c.p % 2 == 0 else 1 terms = [] for k in range((c.p+1)%2, n+1, 2): terms.append(a*x**k) a = -(a*(n-k-1)*(n-k)) // ((k+1)*(k+2)) r = Add(*terms) _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) def _minpoly_exp(ex, x): """ Returns the minimal polynomial of ``exp(ex)`` """ c, a = ex.args[0].as_coeff_Mul() if a == I*pi: if c.is_rational: q = sympify(c.q) if c.p == 1 or c.p == -1: if q == 3: return x**2 - x + 1 if q == 4: return x**4 + 1 if q == 6: return x**4 - x**2 + 1 if q == 8: return x**8 + 1 if q == 9: return x**6 - x**3 + 1 if q == 10: return x**8 - x**6 + x**4 - x**2 + 1 if q.is_prime: s = 0 for i in range(q): s += (-x)**i return s # x**(2*q) = product(factors) factors = [cyclotomic_poly(i, x) for i in divisors(2*q)] mp = _choose_factor(factors, x, ex) return mp else: raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) def _minpoly_rootof(ex, x): """ Returns the minimal polynomial of a ``CRootOf`` object. """ p = ex.expr p = p.subs({ex.poly.gens[0]:x}) _, factors = factor_list(p, x) result = _choose_factor(factors, x, ex) return result def _minpoly_compose(ex, x, dom): """ Computes the minimal polynomial of an algebraic element using operations on minimal polynomials Examples ======== >>> from sympy import minimal_polynomial, sqrt, Rational >>> from sympy.abc import x, y >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True) x**2 - 2*x - 1 >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True) x**2*y**2 - 2*x*y - y**3 + 1 """ if ex.is_Rational: return ex.q*x - ex.p if ex is I: _, factors = factor_list(x**2 + 1, x, domain=dom) return x**2 + 1 if len(factors) == 1 else x - I if ex is S.GoldenRatio: _, factors = factor_list(x**2 - x - 1, x, domain=dom) if len(factors) == 1: return x**2 - x - 1 else: return _choose_factor(factors, x, (1 + sqrt(5))/2, dom=dom) if ex is S.TribonacciConstant: _, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom) if len(factors) == 1: return x**3 - x**2 - x - 1 else: fac = (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 return _choose_factor(factors, x, fac, dom=dom) if hasattr(dom, 'symbols') and ex in dom.symbols: return x - ex if dom.is_QQ and _is_sum_surds(ex): # eliminate the square roots ex -= x while 1: ex1 = _separate_sq(ex) if ex1 is ex: return ex else: ex = ex1 if ex.is_Add: res = _minpoly_add(x, dom, *ex.args) elif ex.is_Mul: f = Factors(ex).factors r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational) if r[True] and dom == QQ: ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]]) r1 = dict(r[True]) dens = [y.q for y in r1.values()] lcmdens = reduce(lcm, dens, 1) neg1 = S.NegativeOne expn1 = r1.pop(neg1, S.Zero) nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()] ex2 = Mul(*nums) mp1 = minimal_polynomial(ex1, x) # use the fact that in SymPy canonicalization products of integers # raised to rational powers are organized in relatively prime # bases, and that in ``base**(n/d)`` a perfect power is # simplified with the root # Powers of -1 have to be treated separately to preserve sign. mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens) ex2 = neg1**expn1 * ex2**Rational(1, lcmdens) res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2) else: res = _minpoly_mul(x, dom, *ex.args) elif ex.is_Pow: res = _minpoly_pow(ex.base, ex.exp, x, dom) elif ex.__class__ is sin: res = _minpoly_sin(ex, x) elif ex.__class__ is cos: res = _minpoly_cos(ex, x) elif ex.__class__ is tan: res = _minpoly_tan(ex, x) elif ex.__class__ is exp: res = _minpoly_exp(ex, x) elif ex.__class__ is CRootOf: res = _minpoly_rootof(ex, x) else: raise NotAlgebraic("%s does not seem to be an algebraic element" % ex) return res @public def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None): """ Computes the minimal polynomial of an algebraic element. Parameters ========== ex : Expr Element or expression whose minimal polynomial is to be calculated. x : Symbol, optional Independent variable of the minimal polynomial compose : boolean, optional (default=True) Method to use for computing minimal polynomial. If ``compose=True`` (default) then ``_minpoly_compose`` is used, if ``compose=False`` then groebner bases are used. polys : boolean, optional (default=False) If ``True`` returns a ``Poly`` object else an ``Expr`` object. domain : Domain, optional Ground domain Notes ===== By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex`` are computed, then the arithmetic operations on them are performed using the resultant and factorization. If ``compose=False``, a bottom-up algorithm is used with ``groebner``. The default algorithm stalls less frequently. If no ground domain is given, it will be generated automatically from the expression. Examples ======== >>> from sympy import minimal_polynomial, sqrt, solve, QQ >>> from sympy.abc import x, y >>> minimal_polynomial(sqrt(2), x) x**2 - 2 >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) x - sqrt(2) >>> minimal_polynomial(sqrt(2) + sqrt(3), x) x**4 - 10*x**2 + 1 >>> minimal_polynomial(solve(x**3 + x + 3)[0], x) x**3 + x + 3 >>> minimal_polynomial(sqrt(y), x) x**2 - y """ ex = sympify(ex) if ex.is_number: # not sure if it's always needed but try it for numbers (issue 8354) ex = _mexpand(ex, recursive=True) for expr in preorder_traversal(ex): if expr.is_AlgebraicNumber: compose = False break if x is not None: x, cls = sympify(x), Poly else: x, cls = Dummy('x'), PurePoly if not domain: if ex.free_symbols: domain = FractionField(QQ, list(ex.free_symbols)) else: domain = QQ if hasattr(domain, 'symbols') and x in domain.symbols: raise GeneratorsError("the variable %s is an element of the ground " "domain %s" % (x, domain)) if compose: result = _minpoly_compose(ex, x, domain) result = result.primitive()[1] c = result.coeff(x**degree(result, x)) if c.is_negative: result = expand_mul(-result) return cls(result, x, field=True) if polys else result.collect(x) if not domain.is_QQ: raise NotImplementedError("groebner method only works for QQ") result = _minpoly_groebner(ex, x, cls) return cls(result, x, field=True) if polys else result.collect(x) def _minpoly_groebner(ex, x, cls): """ Computes the minimal polynomial of an algebraic number using Groebner bases Examples ======== >>> from sympy import minimal_polynomial, sqrt, Rational >>> from sympy.abc import x >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False) x**2 - 2*x - 1 """ generator = numbered_symbols('a', cls=Dummy) mapping, symbols = {}, {} def update_mapping(ex, exp, base=None): a = next(generator) symbols[ex] = a if base is not None: mapping[ex] = a**exp + base else: mapping[ex] = exp.as_expr(a) return a def bottom_up_scan(ex): """ Transform a given algebraic expression *ex* into a multivariate polynomial, by introducing fresh variables with defining equations. Explanation =========== The critical elements of the algebraic expression *ex* are root extractions, instances of :py:class:`~.AlgebraicNumber`, and negative powers. When we encounter a root extraction or an :py:class:`~.AlgebraicNumber` we replace this expression with a fresh variable ``a_i``, and record the defining polynomial for ``a_i``. For example, if ``a_0**(1/3)`` occurs, we will replace it with ``a_1``, and record the new defining polynomial ``a_1**3 - a_0``. When we encounter a negative power we transform it into a positive power by algebraically inverting the base. This means computing the minimal polynomial in ``x`` for the base, inverting ``x`` modulo this poly (which generates a new polynomial) and then substituting the original base expression for ``x`` in this last polynomial. We return the transformed expression, and we record the defining equations for new symbols using the ``update_mapping()`` function. """ if ex.is_Atom: if ex is S.ImaginaryUnit: if ex not in mapping: return update_mapping(ex, 2, 1) else: return symbols[ex] elif ex.is_Rational: return ex elif ex.is_Add: return Add(*[ bottom_up_scan(g) for g in ex.args ]) elif ex.is_Mul: return Mul(*[ bottom_up_scan(g) for g in ex.args ]) elif ex.is_Pow: if ex.exp.is_Rational: if ex.exp < 0: minpoly_base = _minpoly_groebner(ex.base, x, cls) inverse = invert(x, minpoly_base).as_expr() base_inv = inverse.subs(x, ex.base).expand() if ex.exp == -1: return bottom_up_scan(base_inv) else: ex = base_inv**(-ex.exp) if not ex.exp.is_Integer: base, exp = ( ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q) else: base, exp = ex.base, ex.exp base = bottom_up_scan(base) expr = base**exp if expr not in mapping: if exp.is_Integer: return expr.expand() else: return update_mapping(expr, 1 / exp, -base) else: return symbols[expr] elif ex.is_AlgebraicNumber: if ex not in mapping: return update_mapping(ex, ex.minpoly_of_element()) else: return symbols[ex] raise NotAlgebraic("%s does not seem to be an algebraic number" % ex) def simpler_inverse(ex): """ Returns True if it is more likely that the minimal polynomial algorithm works better with the inverse """ if ex.is_Pow: if (1/ex.exp).is_integer and ex.exp < 0: if ex.base.is_Add: return True if ex.is_Mul: hit = True for p in ex.args: if p.is_Add: return False if p.is_Pow: if p.base.is_Add and p.exp > 0: return False if hit: return True return False inverted = False ex = expand_multinomial(ex) if ex.is_AlgebraicNumber: return ex.minpoly_of_element().as_expr(x) elif ex.is_Rational: result = ex.q*x - ex.p else: inverted = simpler_inverse(ex) if inverted: ex = ex**-1 res = None if ex.is_Pow and (1/ex.exp).is_Integer: n = 1/ex.exp res = _minimal_polynomial_sq(ex.base, n, x) elif _is_sum_surds(ex): res = _minimal_polynomial_sq(ex, S.One, x) if res is not None: result = res if res is None: bus = bottom_up_scan(ex) F = [x - bus] + list(mapping.values()) G = groebner(F, list(symbols.values()) + [x], order='lex') _, factors = factor_list(G[-1]) # by construction G[-1] has root `ex` result = _choose_factor(factors, x, ex) if inverted: result = _invertx(result, x) if result.coeff(x**degree(result, x)) < 0: result = expand_mul(-result) return result @public def minpoly(ex, x=None, compose=True, polys=False, domain=None): """This is a synonym for :py:func:`~.minimal_polynomial`.""" return minimal_polynomial(ex, x=x, compose=compose, polys=polys, domain=domain)