r"""Modules in number fields. The classes defined here allow us to work with finitely generated, free modules, whose generators are algebraic numbers. There is an abstract base class called :py:class:`~.Module`, which has two concrete subclasses, :py:class:`~.PowerBasis` and :py:class:`~.Submodule`. Every module is defined by its basis, or set of generators: * For a :py:class:`~.PowerBasis`, the generators are the first $n$ powers (starting with the zeroth) of an algebraic integer $\theta$ of degree $n$. The :py:class:`~.PowerBasis` is constructed by passing either the minimal polynomial of $\theta$, or an :py:class:`~.AlgebraicField` having $\theta$ as its primitive element. * For a :py:class:`~.Submodule`, the generators are a set of $\mathbb{Q}$-linear combinations of the generators of another module. That other module is then the "parent" of the :py:class:`~.Submodule`. The coefficients of the $\mathbb{Q}$-linear combinations may be given by an integer matrix, and a positive integer denominator. Each column of the matrix defines a generator. >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.abc import x >>> from sympy.polys.matrices import DomainMatrix, DM >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5, x)) >>> A = PowerBasis(T) >>> print(A) PowerBasis(x**4 + x**3 + x**2 + x + 1) >>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3) >>> print(B) Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3 >>> print(B.parent) PowerBasis(x**4 + x**3 + x**2 + x + 1) Thus, every module is either a :py:class:`~.PowerBasis`, or a :py:class:`~.Submodule`, some ancestor of which is a :py:class:`~.PowerBasis`. (If ``S`` is a :py:class:`~.Submodule`, then its ancestors are ``S.parent``, ``S.parent.parent``, and so on). The :py:class:`~.ModuleElement` class represents a linear combination of the generators of any module. Critically, the coefficients of this linear combination are not restricted to be integers, but may be any rational numbers. This is necessary so that any and all algebraic integers be representable, starting from the power basis in a primitive element $\theta$ for the number field in question. For example, in a quadratic field $\mathbb{Q}(\sqrt{d})$ where $d \equiv 1 \mod{4}$, a denominator of $2$ is needed. A :py:class:`~.ModuleElement` can be constructed from an integer column vector and a denominator: >>> U = Poly(x**2 - 5) >>> M = PowerBasis(U) >>> e = M(DM([[1], [1]], ZZ), denom=2) >>> print(e) [1, 1]/2 >>> print(e.module) PowerBasis(x**2 - 5) The :py:class:`~.PowerBasisElement` class is a subclass of :py:class:`~.ModuleElement` that represents elements of a :py:class:`~.PowerBasis`, and adds functionality pertinent to elements represented directly over powers of the primitive element $\theta$. Arithmetic with module elements =============================== While a :py:class:`~.ModuleElement` represents a linear combination over the generators of a particular module, recall that every module is either a :py:class:`~.PowerBasis` or a descendant (along a chain of :py:class:`~.Submodule` objects) thereof, so that in fact every :py:class:`~.ModuleElement` represents an algebraic number in some field $\mathbb{Q}(\theta)$, where $\theta$ is the defining element of some :py:class:`~.PowerBasis`. It thus makes sense to talk about the number field to which a given :py:class:`~.ModuleElement` belongs. This means that any two :py:class:`~.ModuleElement` instances can be added, subtracted, multiplied, or divided, provided they belong to the same number field. Similarly, since $\mathbb{Q}$ is a subfield of every number field, any :py:class:`~.ModuleElement` may be added, multiplied, etc. by any rational number. >>> from sympy import QQ >>> from sympy.polys.numberfields.modules import to_col >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) >>> e = A(to_col([0, 2, 0, 0]), denom=3) >>> f = A(to_col([0, 0, 0, 7]), denom=5) >>> g = C(to_col([1, 1, 1, 1])) >>> e + f [0, 10, 0, 21]/15 >>> e - f [0, 10, 0, -21]/15 >>> e - g [-9, -7, -9, -9]/3 >>> e + QQ(7, 10) [21, 20, 0, 0]/30 >>> e * f [-14, -14, -14, -14]/15 >>> e ** 2 [0, 0, 4, 0]/9 >>> f // g [7, 7, 7, 7]/15 >>> f * QQ(2, 3) [0, 0, 0, 14]/15 However, care must be taken with arithmetic operations on :py:class:`~.ModuleElement`, because the module $C$ to which the result will belong will be the nearest common ancestor (NCA) of the modules $A$, $B$ to which the two operands belong, and $C$ may be different from either or both of $A$ and $B$. >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) >>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) >>> print((B(0) * C(0)).module == A) True Before the arithmetic operation is performed, copies of the two operands are automatically converted into elements of the NCA (the operands themselves are not modified). This upward conversion along an ancestor chain is easy: it just requires the successive multiplication by the defining matrix of each :py:class:`~.Submodule`. Conversely, downward conversion, i.e. representing a given :py:class:`~.ModuleElement` in a submodule, is also supported -- namely by the :py:meth:`~sympy.polys.numberfields.modules.Submodule.represent` method -- but is not guaranteed to succeed in general, since the given element may not belong to the submodule. The main circumstance in which this issue tends to arise is with multiplication, since modules, while closed under addition, need not be closed under multiplication. Multiplication -------------- Generally speaking, a module need not be closed under multiplication, i.e. need not form a ring. However, many of the modules we work with in the context of number fields are in fact rings, and our classes do support multiplication. Specifically, any :py:class:`~.Module` can attempt to compute its own multiplication table, but this does not happen unless an attempt is made to multiply two :py:class:`~.ModuleElement` instances belonging to it. >>> A = PowerBasis(T) >>> print(A._mult_tab is None) True >>> a = A(0)*A(1) >>> print(A._mult_tab is None) False Every :py:class:`~.PowerBasis` is, by its nature, closed under multiplication, so instances of :py:class:`~.PowerBasis` can always successfully compute their multiplication table. When a :py:class:`~.Submodule` attempts to compute its multiplication table, it converts each of its own generators into elements of its parent module, multiplies them there, in every possible pairing, and then tries to represent the results in itself, i.e. as $\mathbb{Z}$-linear combinations over its own generators. This will succeed if and only if the submodule is in fact closed under multiplication. Module Homomorphisms ==================== Many important number theoretic algorithms require the calculation of the kernel of one or more module homomorphisms. Accordingly we have several lightweight classes, :py:class:`~.ModuleHomomorphism`, :py:class:`~.ModuleEndomorphism`, :py:class:`~.InnerEndomorphism`, and :py:class:`~.EndomorphismRing`, which provide the minimal necessary machinery to support this. """ from sympy.core.numbers import igcd, ilcm from sympy.core.symbol import Dummy from sympy.polys.polyclasses import ANP from sympy.polys.polytools import Poly from sympy.polys.densetools import dup_clear_denoms from sympy.polys.domains.algebraicfield import AlgebraicField from sympy.polys.domains.finitefield import FF from sympy.polys.domains.rationalfield import QQ from sympy.polys.domains.integerring import ZZ from sympy.polys.matrices.domainmatrix import DomainMatrix from sympy.polys.matrices.exceptions import DMBadInputError from sympy.polys.matrices.normalforms import hermite_normal_form from sympy.polys.polyerrors import CoercionFailed, UnificationFailed from sympy.polys.polyutils import IntegerPowerable from .exceptions import ClosureFailure, MissingUnityError, StructureError from .utilities import AlgIntPowers, is_rat, get_num_denom def to_col(coeffs): r"""Transform a list of integer coefficients into a column vector.""" return DomainMatrix([[ZZ(c) for c in coeffs]], (1, len(coeffs)), ZZ).transpose() class Module: """ Generic finitely-generated module. This is an abstract base class, and should not be instantiated directly. The two concrete subclasses are :py:class:`~.PowerBasis` and :py:class:`~.Submodule`. Every :py:class:`~.Submodule` is derived from another module, referenced by its ``parent`` attribute. If ``S`` is a submodule, then we refer to ``S.parent``, ``S.parent.parent``, and so on, as the "ancestors" of ``S``. Thus, every :py:class:`~.Module` is either a :py:class:`~.PowerBasis` or a :py:class:`~.Submodule`, some ancestor of which is a :py:class:`~.PowerBasis`. """ @property def n(self): """The number of generators of this module.""" raise NotImplementedError def mult_tab(self): """ Get the multiplication table for this module (if closed under mult). Explanation =========== Computes a dictionary ``M`` of dictionaries of lists, representing the upper triangular half of the multiplication table. In other words, if ``0 <= i <= j < self.n``, then ``M[i][j]`` is the list ``c`` of coefficients such that ``g[i] * g[j] == sum(c[k]*g[k], k in range(self.n))``, where ``g`` is the list of generators of this module. If ``j < i`` then ``M[i][j]`` is undefined. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> print(A.mult_tab()) # doctest: +SKIP {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]}, 1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]}, 2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]}, 3: {3: [0, 1, 0, 0]}} Returns ======= dict of dict of lists Raises ====== ClosureFailure If the module is not closed under multiplication. """ raise NotImplementedError @property def parent(self): """ The parent module, if any, for this module. Explanation =========== For a :py:class:`~.Submodule` this is its ``parent`` attribute; for a :py:class:`~.PowerBasis` this is ``None``. Returns ======= :py:class:`~.Module`, ``None`` See Also ======== Module """ return None def represent(self, elt): r""" Represent a module element as an integer-linear combination over the generators of this module. Explanation =========== In our system, to "represent" always means to write a :py:class:`~.ModuleElement` as a :ref:`ZZ`-linear combination over the generators of the present :py:class:`~.Module`. Furthermore, the incoming :py:class:`~.ModuleElement` must belong to an ancestor of the present :py:class:`~.Module` (or to the present :py:class:`~.Module` itself). The most common application is to represent a :py:class:`~.ModuleElement` in a :py:class:`~.Submodule`. For example, this is involved in computing multiplication tables. On the other hand, representing in a :py:class:`~.PowerBasis` is an odd case, and one which tends not to arise in practice, except for example when using a :py:class:`~.ModuleEndomorphism` on a :py:class:`~.PowerBasis`. In such a case, (1) the incoming :py:class:`~.ModuleElement` must belong to the :py:class:`~.PowerBasis` itself (since the latter has no proper ancestors) and (2) it is "representable" iff it belongs to $\mathbb{Z}[\theta]$ (although generally a :py:class:`~.PowerBasisElement` may represent any element of $\mathbb{Q}(\theta)$, i.e. any algebraic number). Examples ======== >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis, to_col >>> from sympy.abc import zeta >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> a = A(to_col([2, 4, 6, 8])) The :py:class:`~.ModuleElement` ``a`` has all even coefficients. If we represent ``a`` in the submodule ``B = 2*A``, the coefficients in the column vector will be halved: >>> B = A.submodule_from_gens([2*A(i) for i in range(4)]) >>> b = B.represent(a) >>> print(b.transpose()) # doctest: +SKIP DomainMatrix([[1, 2, 3, 4]], (1, 4), ZZ) However, the element of ``B`` so defined still represents the same algebraic number: >>> print(a.poly(zeta).as_expr()) 8*zeta**3 + 6*zeta**2 + 4*zeta + 2 >>> print(B(b).over_power_basis().poly(zeta).as_expr()) 8*zeta**3 + 6*zeta**2 + 4*zeta + 2 Parameters ========== elt : :py:class:`~.ModuleElement` The module element to be represented. Must belong to some ancestor module of this module (including this module itself). Returns ======= :py:class:`~.DomainMatrix` over :ref:`ZZ` This will be a column vector, representing the coefficients of a linear combination of this module's generators, which equals the given element. Raises ====== ClosureFailure If the given element cannot be represented as a :ref:`ZZ`-linear combination over this module. See Also ======== .Submodule.represent .PowerBasis.represent """ raise NotImplementedError def ancestors(self, include_self=False): """ Return the list of ancestor modules of this module, from the foundational :py:class:`~.PowerBasis` downward, optionally including ``self``. See Also ======== Module """ c = self.parent a = [] if c is None else c.ancestors(include_self=True) if include_self: a.append(self) return a def power_basis_ancestor(self): """ Return the :py:class:`~.PowerBasis` that is an ancestor of this module. See Also ======== Module """ if isinstance(self, PowerBasis): return self c = self.parent if c is not None: return c.power_basis_ancestor() return None def nearest_common_ancestor(self, other): """ Locate the nearest common ancestor of this module and another. Returns ======= :py:class:`~.Module`, ``None`` See Also ======== Module """ sA = self.ancestors(include_self=True) oA = other.ancestors(include_self=True) nca = None for sa, oa in zip(sA, oA): if sa == oa: nca = sa else: break return nca @property def number_field(self): r""" Return the associated :py:class:`~.AlgebraicField`, if any. Explanation =========== A :py:class:`~.PowerBasis` can be constructed on a :py:class:`~.Poly` $f$ or on an :py:class:`~.AlgebraicField` $K$. In the latter case, the :py:class:`~.PowerBasis` and all its descendant modules will return $K$ as their ``.number_field`` property, while in the former case they will all return ``None``. Returns ======= :py:class:`~.AlgebraicField`, ``None`` """ return self.power_basis_ancestor().number_field def is_compat_col(self, col): """Say whether *col* is a suitable column vector for this module.""" return isinstance(col, DomainMatrix) and col.shape == (self.n, 1) and col.domain.is_ZZ def __call__(self, spec, denom=1): r""" Generate a :py:class:`~.ModuleElement` belonging to this module. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis, to_col >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> e = A(to_col([1, 2, 3, 4]), denom=3) >>> print(e) # doctest: +SKIP [1, 2, 3, 4]/3 >>> f = A(2) >>> print(f) # doctest: +SKIP [0, 0, 1, 0] Parameters ========== spec : :py:class:`~.DomainMatrix`, int Specifies the numerators of the coefficients of the :py:class:`~.ModuleElement`. Can be either a column vector over :ref:`ZZ`, whose length must equal the number $n$ of generators of this module, or else an integer ``j``, $0 \leq j < n$, which is a shorthand for column $j$ of $I_n$, the $n \times n$ identity matrix. denom : int, optional (default=1) Denominator for the coefficients of the :py:class:`~.ModuleElement`. Returns ======= :py:class:`~.ModuleElement` The coefficients are the entries of the *spec* vector, divided by *denom*. """ if isinstance(spec, int) and 0 <= spec < self.n: spec = DomainMatrix.eye(self.n, ZZ)[:, spec].to_dense() if not self.is_compat_col(spec): raise ValueError('Compatible column vector required.') return make_mod_elt(self, spec, denom=denom) def starts_with_unity(self): """Say whether the module's first generator equals unity.""" raise NotImplementedError def basis_elements(self): """ Get list of :py:class:`~.ModuleElement` being the generators of this module. """ return [self(j) for j in range(self.n)] def zero(self): """Return a :py:class:`~.ModuleElement` representing zero.""" return self(0) * 0 def one(self): """ Return a :py:class:`~.ModuleElement` representing unity, and belonging to the first ancestor of this module (including itself) that starts with unity. """ return self.element_from_rational(1) def element_from_rational(self, a): """ Return a :py:class:`~.ModuleElement` representing a rational number. Explanation =========== The returned :py:class:`~.ModuleElement` will belong to the first module on this module's ancestor chain (including this module itself) that starts with unity. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, QQ >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> a = A.element_from_rational(QQ(2, 3)) >>> print(a) # doctest: +SKIP [2, 0, 0, 0]/3 Parameters ========== a : int, :ref:`ZZ`, :ref:`QQ` Returns ======= :py:class:`~.ModuleElement` """ raise NotImplementedError def submodule_from_gens(self, gens, hnf=True, hnf_modulus=None): """ Form the submodule generated by a list of :py:class:`~.ModuleElement` belonging to this module. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> gens = [A(0), 2*A(1), 3*A(2), 4*A(3)//5] >>> B = A.submodule_from_gens(gens) >>> print(B) # doctest: +SKIP Submodule[[5, 0, 0, 0], [0, 10, 0, 0], [0, 0, 15, 0], [0, 0, 0, 4]]/5 Parameters ========== gens : list of :py:class:`~.ModuleElement` belonging to this module. hnf : boolean, optional (default=True) If True, we will reduce the matrix into Hermite Normal Form before forming the :py:class:`~.Submodule`. hnf_modulus : int, None, optional (default=None) Modulus for use in the HNF reduction algorithm. See :py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`. Returns ======= :py:class:`~.Submodule` See Also ======== submodule_from_matrix """ if not all(g.module == self for g in gens): raise ValueError('Generators must belong to this module.') n = len(gens) if n == 0: raise ValueError('Need at least one generator.') m = gens[0].n d = gens[0].denom if n == 1 else ilcm(*[g.denom for g in gens]) B = DomainMatrix.zeros((m, 0), ZZ).hstack(*[(d // g.denom) * g.col for g in gens]) if hnf: B = hermite_normal_form(B, D=hnf_modulus) return self.submodule_from_matrix(B, denom=d) def submodule_from_matrix(self, B, denom=1): """ Form the submodule generated by the elements of this module indicated by the columns of a matrix, with an optional denominator. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.polys.matrices import DM >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(DM([ ... [0, 10, 0, 0], ... [0, 0, 7, 0], ... ], ZZ).transpose(), denom=15) >>> print(B) # doctest: +SKIP Submodule[[0, 10, 0, 0], [0, 0, 7, 0]]/15 Parameters ========== B : :py:class:`~.DomainMatrix` over :ref:`ZZ` Each column gives the numerators of the coefficients of one generator of the submodule. Thus, the number of rows of *B* must equal the number of generators of the present module. denom : int, optional (default=1) Common denominator for all generators of the submodule. Returns ======= :py:class:`~.Submodule` Raises ====== ValueError If the given matrix *B* is not over :ref:`ZZ` or its number of rows does not equal the number of generators of the present module. See Also ======== submodule_from_gens """ m, n = B.shape if not B.domain.is_ZZ: raise ValueError('Matrix must be over ZZ.') if not m == self.n: raise ValueError('Matrix row count must match base module.') return Submodule(self, B, denom=denom) def whole_submodule(self): """ Return a submodule equal to this entire module. Explanation =========== This is useful when you have a :py:class:`~.PowerBasis` and want to turn it into a :py:class:`~.Submodule` (in order to use methods belonging to the latter). """ B = DomainMatrix.eye(self.n, ZZ) return self.submodule_from_matrix(B) def endomorphism_ring(self): """Form the :py:class:`~.EndomorphismRing` for this module.""" return EndomorphismRing(self) class PowerBasis(Module): """The module generated by the powers of an algebraic integer.""" def __init__(self, T): """ Parameters ========== T : :py:class:`~.Poly`, :py:class:`~.AlgebraicField` Either (1) the monic, irreducible, univariate polynomial over :ref:`ZZ`, a root of which is the generator of the power basis, or (2) an :py:class:`~.AlgebraicField` whose primitive element is the generator of the power basis. """ K = None if isinstance(T, AlgebraicField): K, T = T, T.ext.minpoly_of_element() # Sometimes incoming Polys are formally over QQ, although all their # coeffs are integral. We want them to be formally over ZZ. T = T.set_domain(ZZ) self.K = K self.T = T self._n = T.degree() self._mult_tab = None @property def number_field(self): return self.K def __repr__(self): return f'PowerBasis({self.T.as_expr()})' def __eq__(self, other): if isinstance(other, PowerBasis): return self.T == other.T return NotImplemented @property def n(self): return self._n def mult_tab(self): if self._mult_tab is None: self.compute_mult_tab() return self._mult_tab def compute_mult_tab(self): theta_pow = AlgIntPowers(self.T) M = {} n = self.n for u in range(n): M[u] = {} for v in range(u, n): M[u][v] = theta_pow[u + v] self._mult_tab = M def represent(self, elt): r""" Represent a module element as an integer-linear combination over the generators of this module. See Also ======== .Module.represent .Submodule.represent """ if elt.module == self and elt.denom == 1: return elt.column() else: raise ClosureFailure('Element not representable in ZZ[theta].') def starts_with_unity(self): return True def element_from_rational(self, a): return self(0) * a def element_from_poly(self, f): """ Produce an element of this module, representing *f* after reduction mod our defining minimal polynomial. Parameters ========== f : :py:class:`~.Poly` over :ref:`ZZ` in same var as our defining poly. Returns ======= :py:class:`~.PowerBasisElement` """ n, k = self.n, f.degree() if k >= n: f = f % self.T if f == 0: return self.zero() d, c = dup_clear_denoms(f.rep.rep, QQ, convert=True) c = list(reversed(c)) ell = len(c) z = [ZZ(0)] * (n - ell) col = to_col(c + z) return self(col, denom=d) def _element_from_rep_and_mod(self, rep, mod): """ Produce a PowerBasisElement representing a given algebraic number. Parameters ========== rep : list of coeffs Represents the number as polynomial in the primitive element of the field. mod : list of coeffs Represents the minimal polynomial of the primitive element of the field. Returns ======= :py:class:`~.PowerBasisElement` """ if mod != self.T.rep.rep: raise UnificationFailed('Element does not appear to be in the same field.') return self.element_from_poly(Poly(rep, self.T.gen)) def element_from_ANP(self, a): """Convert an ANP into a PowerBasisElement. """ return self._element_from_rep_and_mod(a.rep, a.mod) def element_from_alg_num(self, a): """Convert an AlgebraicNumber into a PowerBasisElement. """ return self._element_from_rep_and_mod(a.rep.rep, a.minpoly.rep.rep) class Submodule(Module, IntegerPowerable): """A submodule of another module.""" def __init__(self, parent, matrix, denom=1, mult_tab=None): """ Parameters ========== parent : :py:class:`~.Module` The module from which this one is derived. matrix : :py:class:`~.DomainMatrix` over :ref:`ZZ` The matrix whose columns define this submodule's generators as linear combinations over the parent's generators. denom : int, optional (default=1) Denominator for the coefficients given by the matrix. mult_tab : dict, ``None``, optional If already known, the multiplication table for this module may be supplied. """ self._parent = parent self._matrix = matrix self._denom = denom self._mult_tab = mult_tab self._n = matrix.shape[1] self._QQ_matrix = None self._starts_with_unity = None self._is_sq_maxrank_HNF = None def __repr__(self): r = 'Submodule' + repr(self.matrix.transpose().to_Matrix().tolist()) if self.denom > 1: r += f'/{self.denom}' return r def reduced(self): """ Produce a reduced version of this submodule. Explanation =========== In the reduced version, it is guaranteed that 1 is the only positive integer dividing both the submodule's denominator, and every entry in the submodule's matrix. Returns ======= :py:class:`~.Submodule` """ if self.denom == 1: return self g = igcd(self.denom, *self.coeffs) if g == 1: return self return type(self)(self.parent, (self.matrix / g).convert_to(ZZ), denom=self.denom // g, mult_tab=self._mult_tab) def discard_before(self, r): """ Produce a new module by discarding all generators before a given index *r*. """ W = self.matrix[:, r:] s = self.n - r M = None mt = self._mult_tab if mt is not None: M = {} for u in range(s): M[u] = {} for v in range(u, s): M[u][v] = mt[r + u][r + v][r:] return Submodule(self.parent, W, denom=self.denom, mult_tab=M) @property def n(self): return self._n def mult_tab(self): if self._mult_tab is None: self.compute_mult_tab() return self._mult_tab def compute_mult_tab(self): gens = self.basis_element_pullbacks() M = {} n = self.n for u in range(n): M[u] = {} for v in range(u, n): M[u][v] = self.represent(gens[u] * gens[v]).flat() self._mult_tab = M @property def parent(self): return self._parent @property def matrix(self): return self._matrix @property def coeffs(self): return self.matrix.flat() @property def denom(self): return self._denom @property def QQ_matrix(self): """ :py:class:`~.DomainMatrix` over :ref:`QQ`, equal to ``self.matrix / self.denom``, and guaranteed to be dense. Explanation =========== Depending on how it is formed, a :py:class:`~.DomainMatrix` may have an internal representation that is sparse or dense. We guarantee a dense representation here, so that tests for equivalence of submodules always come out as expected. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.abc import x >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5, x)) >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(3*DomainMatrix.eye(4, ZZ), denom=6) >>> C = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2) >>> print(B.QQ_matrix == C.QQ_matrix) True Returns ======= :py:class:`~.DomainMatrix` over :ref:`QQ` """ if self._QQ_matrix is None: self._QQ_matrix = (self.matrix / self.denom).to_dense() return self._QQ_matrix def starts_with_unity(self): if self._starts_with_unity is None: self._starts_with_unity = self(0).equiv(1) return self._starts_with_unity def is_sq_maxrank_HNF(self): if self._is_sq_maxrank_HNF is None: self._is_sq_maxrank_HNF = is_sq_maxrank_HNF(self._matrix) return self._is_sq_maxrank_HNF def is_power_basis_submodule(self): return isinstance(self.parent, PowerBasis) def element_from_rational(self, a): if self.starts_with_unity(): return self(0) * a else: return self.parent.element_from_rational(a) def basis_element_pullbacks(self): """ Return list of this submodule's basis elements as elements of the submodule's parent module. """ return [e.to_parent() for e in self.basis_elements()] def represent(self, elt): """ Represent a module element as an integer-linear combination over the generators of this module. See Also ======== .Module.represent .PowerBasis.represent """ if elt.module == self: return elt.column() elif elt.module == self.parent: try: # The given element should be a ZZ-linear combination over our # basis vectors; however, due to the presence of denominators, # we need to solve over QQ. A = self.QQ_matrix b = elt.QQ_col x = A._solve(b)[0].transpose() x = x.convert_to(ZZ) except DMBadInputError: raise ClosureFailure('Element outside QQ-span of this basis.') except CoercionFailed: raise ClosureFailure('Element in QQ-span but not ZZ-span of this basis.') return x elif isinstance(self.parent, Submodule): coeffs_in_parent = self.parent.represent(elt) parent_element = self.parent(coeffs_in_parent) return self.represent(parent_element) else: raise ClosureFailure('Element outside ancestor chain of this module.') def is_compat_submodule(self, other): return isinstance(other, Submodule) and other.parent == self.parent def __eq__(self, other): if self.is_compat_submodule(other): return other.QQ_matrix == self.QQ_matrix return NotImplemented def add(self, other, hnf=True, hnf_modulus=None): """ Add this :py:class:`~.Submodule` to another. Explanation =========== This represents the module generated by the union of the two modules' sets of generators. Parameters ========== other : :py:class:`~.Submodule` hnf : boolean, optional (default=True) If ``True``, reduce the matrix of the combined module to its Hermite Normal Form. hnf_modulus : :ref:`ZZ`, None, optional If a positive integer is provided, use this as modulus in the HNF reduction. See :py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`. Returns ======= :py:class:`~.Submodule` """ d, e = self.denom, other.denom m = ilcm(d, e) a, b = m // d, m // e B = (a * self.matrix).hstack(b * other.matrix) if hnf: B = hermite_normal_form(B, D=hnf_modulus) return self.parent.submodule_from_matrix(B, denom=m) def __add__(self, other): if self.is_compat_submodule(other): return self.add(other) return NotImplemented __radd__ = __add__ def mul(self, other, hnf=True, hnf_modulus=None): """ Multiply this :py:class:`~.Submodule` by a rational number, a :py:class:`~.ModuleElement`, or another :py:class:`~.Submodule`. Explanation =========== To multiply by a rational number or :py:class:`~.ModuleElement` means to form the submodule whose generators are the products of this quantity with all the generators of the present submodule. To multiply by another :py:class:`~.Submodule` means to form the submodule whose generators are all the products of one generator from the one submodule, and one generator from the other. Parameters ========== other : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.ModuleElement`, :py:class:`~.Submodule` hnf : boolean, optional (default=True) If ``True``, reduce the matrix of the product module to its Hermite Normal Form. hnf_modulus : :ref:`ZZ`, None, optional If a positive integer is provided, use this as modulus in the HNF reduction. See :py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`. Returns ======= :py:class:`~.Submodule` """ if is_rat(other): a, b = get_num_denom(other) if a == b == 1: return self else: return Submodule(self.parent, self.matrix * a, denom=self.denom * b, mult_tab=None).reduced() elif isinstance(other, ModuleElement) and other.module == self.parent: # The submodule is multiplied by an element of the parent module. # We presume this means we want a new submodule of the parent module. gens = [other * e for e in self.basis_element_pullbacks()] return self.parent.submodule_from_gens(gens, hnf=hnf, hnf_modulus=hnf_modulus) elif self.is_compat_submodule(other): # This case usually means you're multiplying ideals, and want another # ideal, i.e. another submodule of the same parent module. alphas, betas = self.basis_element_pullbacks(), other.basis_element_pullbacks() gens = [a * b for a in alphas for b in betas] return self.parent.submodule_from_gens(gens, hnf=hnf, hnf_modulus=hnf_modulus) return NotImplemented def __mul__(self, other): return self.mul(other) __rmul__ = __mul__ def _first_power(self): return self def reduce_element(self, elt): r""" If this submodule $B$ has defining matrix $W$ in square, maximal-rank Hermite normal form, then, given an element $x$ of the parent module $A$, we produce an element $y \in A$ such that $x - y \in B$, and the $i$th coordinate of $y$ satisfies $0 \leq y_i < w_{i,i}$. This representative $y$ is unique, in the sense that every element of the coset $x + B$ reduces to it under this procedure. Explanation =========== In the special case where $A$ is a power basis for a number field $K$, and $B$ is a submodule representing an ideal $I$, this operation represents one of a few important ways of reducing an element of $K$ modulo $I$ to obtain a "small" representative. See [Cohen00]_ Section 1.4.3. Examples ======== >>> from sympy import QQ, Poly, symbols >>> t = symbols('t') >>> k = QQ.alg_field_from_poly(Poly(t**3 + t**2 - 2*t + 8)) >>> Zk = k.maximal_order() >>> A = Zk.parent >>> B = (A(2) - 3*A(0))*Zk >>> B.reduce_element(A(2)) [3, 0, 0] Parameters ========== elt : :py:class:`~.ModuleElement` An element of this submodule's parent module. Returns ======= elt : :py:class:`~.ModuleElement` An element of this submodule's parent module. Raises ====== NotImplementedError If the given :py:class:`~.ModuleElement` does not belong to this submodule's parent module. StructureError If this submodule's defining matrix is not in square, maximal-rank Hermite normal form. References ========== .. [Cohen00] Cohen, H. *Advanced Topics in Computational Number Theory.* """ if not elt.module == self.parent: raise NotImplementedError if not self.is_sq_maxrank_HNF(): msg = "Reduction not implemented unless matrix square max-rank HNF" raise StructureError(msg) B = self.basis_element_pullbacks() a = elt for i in range(self.n - 1, -1, -1): b = B[i] q = a.coeffs[i]*b.denom // (b.coeffs[i]*a.denom) a -= q*b return a def is_sq_maxrank_HNF(dm): r""" Say whether a :py:class:`~.DomainMatrix` is in that special case of Hermite Normal Form, in which the matrix is also square and of maximal rank. Explanation =========== We commonly work with :py:class:`~.Submodule` instances whose matrix is in this form, and it can be useful to be able to check that this condition is satisfied. For example this is the case with the :py:class:`~.Submodule` ``ZK`` returned by :py:func:`~sympy.polys.numberfields.basis.round_two`, which represents the maximal order in a number field, and with ideals formed therefrom, such as ``2 * ZK``. """ if dm.domain.is_ZZ and dm.is_square and dm.is_upper: n = dm.shape[0] for i in range(n): d = dm[i, i].element if d <= 0: return False for j in range(i + 1, n): if not (0 <= dm[i, j].element < d): return False return True return False def make_mod_elt(module, col, denom=1): r""" Factory function which builds a :py:class:`~.ModuleElement`, but ensures that it is a :py:class:`~.PowerBasisElement` if the module is a :py:class:`~.PowerBasis`. """ if isinstance(module, PowerBasis): return PowerBasisElement(module, col, denom=denom) else: return ModuleElement(module, col, denom=denom) class ModuleElement(IntegerPowerable): r""" Represents an element of a :py:class:`~.Module`. NOTE: Should not be constructed directly. Use the :py:meth:`~.Module.__call__` method or the :py:func:`make_mod_elt()` factory function instead. """ def __init__(self, module, col, denom=1): """ Parameters ========== module : :py:class:`~.Module` The module to which this element belongs. col : :py:class:`~.DomainMatrix` over :ref:`ZZ` Column vector giving the numerators of the coefficients of this element. denom : int, optional (default=1) Denominator for the coefficients of this element. """ self.module = module self.col = col self.denom = denom self._QQ_col = None def __repr__(self): r = str([int(c) for c in self.col.flat()]) if self.denom > 1: r += f'/{self.denom}' return r def reduced(self): """ Produce a reduced version of this ModuleElement, i.e. one in which the gcd of the denominator together with all numerator coefficients is 1. """ if self.denom == 1: return self g = igcd(self.denom, *self.coeffs) if g == 1: return self return type(self)(self.module, (self.col / g).convert_to(ZZ), denom=self.denom // g) def reduced_mod_p(self, p): """ Produce a version of this :py:class:`~.ModuleElement` in which all numerator coefficients have been reduced mod *p*. """ return make_mod_elt(self.module, self.col.convert_to(FF(p)).convert_to(ZZ), denom=self.denom) @classmethod def from_int_list(cls, module, coeffs, denom=1): """ Make a :py:class:`~.ModuleElement` from a list of ints (instead of a column vector). """ col = to_col(coeffs) return cls(module, col, denom=denom) @property def n(self): """The length of this element's column.""" return self.module.n def __len__(self): return self.n def column(self, domain=None): """ Get a copy of this element's column, optionally converting to a domain. """ return self.col.convert_to(domain) @property def coeffs(self): return self.col.flat() @property def QQ_col(self): """ :py:class:`~.DomainMatrix` over :ref:`QQ`, equal to ``self.col / self.denom``, and guaranteed to be dense. See Also ======== .Submodule.QQ_matrix """ if self._QQ_col is None: self._QQ_col = (self.col / self.denom).to_dense() return self._QQ_col def to_parent(self): """ Transform into a :py:class:`~.ModuleElement` belonging to the parent of this element's module. """ if not isinstance(self.module, Submodule): raise ValueError('Not an element of a Submodule.') return make_mod_elt( self.module.parent, self.module.matrix * self.col, denom=self.module.denom * self.denom) def to_ancestor(self, anc): """ Transform into a :py:class:`~.ModuleElement` belonging to a given ancestor of this element's module. Parameters ========== anc : :py:class:`~.Module` """ if anc == self.module: return self else: return self.to_parent().to_ancestor(anc) def over_power_basis(self): """ Transform into a :py:class:`~.PowerBasisElement` over our :py:class:`~.PowerBasis` ancestor. """ e = self while not isinstance(e.module, PowerBasis): e = e.to_parent() return e def is_compat(self, other): """ Test whether other is another :py:class:`~.ModuleElement` with same module. """ return isinstance(other, ModuleElement) and other.module == self.module def unify(self, other): """ Try to make a compatible pair of :py:class:`~.ModuleElement`, one equivalent to this one, and one equivalent to the other. Explanation =========== We search for the nearest common ancestor module for the pair of elements, and represent each one there. Returns ======= Pair ``(e1, e2)`` Each ``ei`` is a :py:class:`~.ModuleElement`, they belong to the same :py:class:`~.Module`, ``e1`` is equivalent to ``self``, and ``e2`` is equivalent to ``other``. Raises ====== UnificationFailed If ``self`` and ``other`` have no common ancestor module. """ if self.module == other.module: return self, other nca = self.module.nearest_common_ancestor(other.module) if nca is not None: return self.to_ancestor(nca), other.to_ancestor(nca) raise UnificationFailed(f"Cannot unify {self} with {other}") def __eq__(self, other): if self.is_compat(other): return self.QQ_col == other.QQ_col return NotImplemented def equiv(self, other): """ A :py:class:`~.ModuleElement` may test as equivalent to a rational number or another :py:class:`~.ModuleElement`, if they represent the same algebraic number. Explanation =========== This method is intended to check equivalence only in those cases in which it is easy to test; namely, when *other* is either a :py:class:`~.ModuleElement` that can be unified with this one (i.e. one which shares a common :py:class:`~.PowerBasis` ancestor), or else a rational number (which is easy because every :py:class:`~.PowerBasis` represents every rational number). Parameters ========== other : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.ModuleElement` Returns ======= bool Raises ====== UnificationFailed If ``self`` and ``other`` do not share a common :py:class:`~.PowerBasis` ancestor. """ if self == other: return True elif isinstance(other, ModuleElement): a, b = self.unify(other) return a == b elif is_rat(other): if isinstance(self, PowerBasisElement): return self == self.module(0) * other else: return self.over_power_basis().equiv(other) return False def __add__(self, other): """ A :py:class:`~.ModuleElement` can be added to a rational number, or to another :py:class:`~.ModuleElement`. Explanation =========== When the other summand is a rational number, it will be converted into a :py:class:`~.ModuleElement` (belonging to the first ancestor of this module that starts with unity). In all cases, the sum belongs to the nearest common ancestor (NCA) of the modules of the two summands. If the NCA does not exist, we return ``NotImplemented``. """ if self.is_compat(other): d, e = self.denom, other.denom m = ilcm(d, e) u, v = m // d, m // e col = to_col([u * a + v * b for a, b in zip(self.coeffs, other.coeffs)]) return type(self)(self.module, col, denom=m).reduced() elif isinstance(other, ModuleElement): try: a, b = self.unify(other) except UnificationFailed: return NotImplemented return a + b elif is_rat(other): return self + self.module.element_from_rational(other) return NotImplemented __radd__ = __add__ def __neg__(self): return self * -1 def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other def __mul__(self, other): """ A :py:class:`~.ModuleElement` can be multiplied by a rational number, or by another :py:class:`~.ModuleElement`. Explanation =========== When the multiplier is a rational number, the product is computed by operating directly on the coefficients of this :py:class:`~.ModuleElement`. When the multiplier is another :py:class:`~.ModuleElement`, the product will belong to the nearest common ancestor (NCA) of the modules of the two operands, and that NCA must have a multiplication table. If the NCA does not exist, we return ``NotImplemented``. If the NCA does not have a mult. table, ``ClosureFailure`` will be raised. """ if self.is_compat(other): M = self.module.mult_tab() A, B = self.col.flat(), other.col.flat() n = self.n C = [0] * n for u in range(n): for v in range(u, n): c = A[u] * B[v] if v > u: c += A[v] * B[u] if c != 0: R = M[u][v] for k in range(n): C[k] += c * R[k] d = self.denom * other.denom return self.from_int_list(self.module, C, denom=d) elif isinstance(other, ModuleElement): try: a, b = self.unify(other) except UnificationFailed: return NotImplemented return a * b elif is_rat(other): a, b = get_num_denom(other) if a == b == 1: return self else: return make_mod_elt(self.module, self.col * a, denom=self.denom * b).reduced() return NotImplemented __rmul__ = __mul__ def _zeroth_power(self): return self.module.one() def _first_power(self): return self def __floordiv__(self, a): if is_rat(a): a = QQ(a) return self * (1/a) elif isinstance(a, ModuleElement): return self * (1//a) return NotImplemented def __rfloordiv__(self, a): return a // self.over_power_basis() def __mod__(self, m): r""" Reduce this :py:class:`~.ModuleElement` mod a :py:class:`~.Submodule`. Parameters ========== m : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.Submodule` If a :py:class:`~.Submodule`, reduce ``self`` relative to this. If an integer or rational, reduce relative to the :py:class:`~.Submodule` that is our own module times this constant. See Also ======== .Submodule.reduce_element """ if is_rat(m): m = m * self.module.whole_submodule() if isinstance(m, Submodule) and m.parent == self.module: return m.reduce_element(self) return NotImplemented class PowerBasisElement(ModuleElement): r""" Subclass for :py:class:`~.ModuleElement` instances whose module is a :py:class:`~.PowerBasis`. """ @property def T(self): """Access the defining polynomial of the :py:class:`~.PowerBasis`.""" return self.module.T def numerator(self, x=None): """Obtain the numerator as a polynomial over :ref:`ZZ`.""" x = x or self.T.gen return Poly(reversed(self.coeffs), x, domain=ZZ) def poly(self, x=None): """Obtain the number as a polynomial over :ref:`QQ`.""" return self.numerator(x=x) // self.denom @property def is_rational(self): """Say whether this element represents a rational number.""" return self.col[1:, :].is_zero_matrix @property def generator(self): """ Return a :py:class:`~.Symbol` to be used when expressing this element as a polynomial. If we have an associated :py:class:`~.AlgebraicField` whose primitive element has an alias symbol, we use that. Otherwise we use the variable of the minimal polynomial defining the power basis to which we belong. """ K = self.module.number_field return K.ext.alias if K and K.ext.is_aliased else self.T.gen def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.poly(x or self.generator).as_expr() def norm(self, T=None): """Compute the norm of this number.""" T = T or self.T x = T.gen A = self.numerator(x=x) return T.resultant(A) // self.denom ** self.n def inverse(self): f = self.poly() f_inv = f.invert(self.T) return self.module.element_from_poly(f_inv) def __rfloordiv__(self, a): return self.inverse() * a def _negative_power(self, e, modulo=None): return self.inverse() ** abs(e) def to_ANP(self): """Convert to an equivalent :py:class:`~.ANP`. """ return ANP(list(reversed(self.QQ_col.flat())), QQ.map(self.T.rep.rep), QQ) def to_alg_num(self): """ Try to convert to an equivalent :py:class:`~.AlgebraicNumber`. Explanation =========== In general, the conversion from an :py:class:`~.AlgebraicNumber` to a :py:class:`~.PowerBasisElement` throws away information, because an :py:class:`~.AlgebraicNumber` specifies a complex embedding, while a :py:class:`~.PowerBasisElement` does not. However, in some cases it is possible to convert a :py:class:`~.PowerBasisElement` back into an :py:class:`~.AlgebraicNumber`, namely when the associated :py:class:`~.PowerBasis` has a reference to an :py:class:`~.AlgebraicField`. Returns ======= :py:class:`~.AlgebraicNumber` Raises ====== StructureError If the :py:class:`~.PowerBasis` to which this element belongs does not have an associated :py:class:`~.AlgebraicField`. """ K = self.module.number_field if K: return K.to_alg_num(self.to_ANP()) raise StructureError("No associated AlgebraicField") class ModuleHomomorphism: r"""A homomorphism from one module to another.""" def __init__(self, domain, codomain, mapping): r""" Parameters ========== domain : :py:class:`~.Module` The domain of the mapping. codomain : :py:class:`~.Module` The codomain of the mapping. mapping : callable An arbitrary callable is accepted, but should be chosen so as to represent an actual module homomorphism. In particular, should accept elements of *domain* and return elements of *codomain*. Examples ======== >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis, ModuleHomomorphism >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> B = A.submodule_from_gens([2*A(j) for j in range(4)]) >>> phi = ModuleHomomorphism(A, B, lambda x: 6*x) >>> print(phi.matrix()) # doctest: +SKIP DomainMatrix([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], (4, 4), ZZ) """ self.domain = domain self.codomain = codomain self.mapping = mapping def matrix(self, modulus=None): r""" Compute the matrix of this homomorphism. Parameters ========== modulus : int, optional A positive prime number $p$ if the matrix should be reduced mod $p$. Returns ======= :py:class:`~.DomainMatrix` The matrix is over :ref:`ZZ`, or else over :ref:`GF(p)` if a modulus was given. """ basis = self.domain.basis_elements() cols = [self.codomain.represent(self.mapping(elt)) for elt in basis] if not cols: return DomainMatrix.zeros((self.codomain.n, 0), ZZ).to_dense() M = cols[0].hstack(*cols[1:]) if modulus: M = M.convert_to(FF(modulus)) return M def kernel(self, modulus=None): r""" Compute a Submodule representing the kernel of this homomorphism. Parameters ========== modulus : int, optional A positive prime number $p$ if the kernel should be computed mod $p$. Returns ======= :py:class:`~.Submodule` This submodule's generators span the kernel of this homomorphism over :ref:`ZZ`, or else over :ref:`GF(p)` if a modulus was given. """ M = self.matrix(modulus=modulus) if modulus is None: M = M.convert_to(QQ) # Note: Even when working over a finite field, what we want here is # the pullback into the integers, so in this case the conversion to ZZ # below is appropriate. When working over ZZ, the kernel should be a # ZZ-submodule, so, while the conversion to QQ above was required in # order for the nullspace calculation to work, conversion back to ZZ # afterward should always work. # TODO: # Watch , which calls # for fraction-free algorithms. If this is implemented, we can skip # the conversion to `QQ` above. K = M.nullspace().convert_to(ZZ).transpose() return self.domain.submodule_from_matrix(K) class ModuleEndomorphism(ModuleHomomorphism): r"""A homomorphism from one module to itself.""" def __init__(self, domain, mapping): r""" Parameters ========== domain : :py:class:`~.Module` The common domain and codomain of the mapping. mapping : callable An arbitrary callable is accepted, but should be chosen so as to represent an actual module endomorphism. In particular, should accept and return elements of *domain*. """ super().__init__(domain, domain, mapping) class InnerEndomorphism(ModuleEndomorphism): r""" An inner endomorphism on a module, i.e. the endomorphism corresponding to multiplication by a fixed element. """ def __init__(self, domain, multiplier): r""" Parameters ========== domain : :py:class:`~.Module` The domain and codomain of the endomorphism. multiplier : :py:class:`~.ModuleElement` The element $a$ defining the mapping as $x \mapsto a x$. """ super().__init__(domain, lambda x: multiplier * x) self.multiplier = multiplier class EndomorphismRing: r"""The ring of endomorphisms on a module.""" def __init__(self, domain): """ Parameters ========== domain : :py:class:`~.Module` The domain and codomain of the endomorphisms. """ self.domain = domain def inner_endomorphism(self, multiplier): r""" Form an inner endomorphism belonging to this endomorphism ring. Parameters ========== multiplier : :py:class:`~.ModuleElement` Element $a$ defining the inner endomorphism $x \mapsto a x$. Returns ======= :py:class:`~.InnerEndomorphism` """ return InnerEndomorphism(self.domain, multiplier) def represent(self, element): r""" Represent an element of this endomorphism ring, as a single column vector. Explanation =========== Let $M$ be a module, and $E$ its ring of endomorphisms. Let $N$ be another module, and consider a homomorphism $\varphi: N \rightarrow E$. In the event that $\varphi$ is to be represented by a matrix $A$, each column of $A$ must represent an element of $E$. This is possible when the elements of $E$ are themselves representable as matrices, by stacking the columns of such a matrix into a single column. This method supports calculating such matrices $A$, by representing an element of this endomorphism ring first as a matrix, and then stacking that matrix's columns into a single column. Examples ======== Note that in these examples we print matrix transposes, to make their columns easier to inspect. >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> from sympy.polys.numberfields.modules import ModuleHomomorphism >>> T = Poly(cyclotomic_poly(5)) >>> M = PowerBasis(T) >>> E = M.endomorphism_ring() Let $\zeta$ be a primitive 5th root of unity, a generator of our field, and consider the inner endomorphism $\tau$ on the ring of integers, induced by $\zeta$: >>> zeta = M(1) >>> tau = E.inner_endomorphism(zeta) >>> tau.matrix().transpose() # doctest: +SKIP DomainMatrix( [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [-1, -1, -1, -1]], (4, 4), ZZ) The matrix representation of $\tau$ is as expected. The first column shows that multiplying by $\zeta$ carries $1$ to $\zeta$, the second column that it carries $\zeta$ to $\zeta^2$, and so forth. The ``represent`` method of the endomorphism ring ``E`` stacks these into a single column: >>> E.represent(tau).transpose() # doctest: +SKIP DomainMatrix( [[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]], (1, 16), ZZ) This is useful when we want to consider a homomorphism $\varphi$ having ``E`` as codomain: >>> phi = ModuleHomomorphism(M, E, lambda x: E.inner_endomorphism(x)) and we want to compute the matrix of such a homomorphism: >>> phi.matrix().transpose() # doctest: +SKIP DomainMatrix( [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1], [0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 0, 0, 0], [0, 0, 0, 1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 1, 0, 0]], (4, 16), ZZ) Note that the stacked matrix of $\tau$ occurs as the second column in this example. This is because $\zeta$ is the second basis element of ``M``, and $\varphi(\zeta) = \tau$. Parameters ========== element : :py:class:`~.ModuleEndomorphism` belonging to this ring. Returns ======= :py:class:`~.DomainMatrix` Column vector equalling the vertical stacking of all the columns of the matrix that represents the given *element* as a mapping. """ if isinstance(element, ModuleEndomorphism) and element.domain == self.domain: M = element.matrix() # Transform the matrix into a single column, which should reproduce # the original columns, one after another. m, n = M.shape if n == 0: return M return M[:, 0].vstack(*[M[:, j] for j in range(1, n)]) raise NotImplementedError def find_min_poly(alpha, domain, x=None, powers=None): r""" Find a polynomial of least degree (not necessarily irreducible) satisfied by an element of a finitely-generated ring with unity. Examples ======== For the $n$th cyclotomic field, $n$ an odd prime, consider the quadratic equation whose roots are the two periods of length $(n-1)/2$. Article 356 of Gauss tells us that we should get $x^2 + x - (n-1)/4$ or $x^2 + x + (n+1)/4$ according to whether $n$ is 1 or 3 mod 4, respectively. >>> from sympy import Poly, cyclotomic_poly, primitive_root, QQ >>> from sympy.abc import x >>> from sympy.polys.numberfields.modules import PowerBasis, find_min_poly >>> n = 13 >>> g = primitive_root(n) >>> C = PowerBasis(Poly(cyclotomic_poly(n, x))) >>> ee = [g**(2*k+1) % n for k in range((n-1)//2)] >>> eta = sum(C(e) for e in ee) >>> print(find_min_poly(eta, QQ, x=x).as_expr()) x**2 + x - 3 >>> n = 19 >>> g = primitive_root(n) >>> C = PowerBasis(Poly(cyclotomic_poly(n, x))) >>> ee = [g**(2*k+2) % n for k in range((n-1)//2)] >>> eta = sum(C(e) for e in ee) >>> print(find_min_poly(eta, QQ, x=x).as_expr()) x**2 + x + 5 Parameters ========== alpha : :py:class:`~.ModuleElement` The element whose min poly is to be found, and whose module has multiplication and starts with unity. domain : :py:class:`~.Domain` The desired domain of the polynomial. x : :py:class:`~.Symbol`, optional The desired variable for the polynomial. powers : list, optional If desired, pass an empty list. The powers of *alpha* (as :py:class:`~.ModuleElement` instances) from the zeroth up to the degree of the min poly will be recorded here, as we compute them. Returns ======= :py:class:`~.Poly`, ``None`` The minimal polynomial for alpha, or ``None`` if no polynomial could be found over the desired domain. Raises ====== MissingUnityError If the module to which alpha belongs does not start with unity. ClosureFailure If the module to which alpha belongs is not closed under multiplication. """ R = alpha.module if not R.starts_with_unity(): raise MissingUnityError("alpha must belong to finitely generated ring with unity.") if powers is None: powers = [] one = R(0) powers.append(one) powers_matrix = one.column(domain=domain) ak = alpha m = None for k in range(1, R.n + 1): powers.append(ak) ak_col = ak.column(domain=domain) try: X = powers_matrix._solve(ak_col)[0] except DMBadInputError: # This means alpha^k still isn't in the domain-span of the lower powers. powers_matrix = powers_matrix.hstack(ak_col) ak *= alpha else: # alpha^k is in the domain-span of the lower powers, so we have found a # minimal-degree poly for alpha. coeffs = [1] + [-c for c in reversed(X.to_list_flat())] x = x or Dummy('x') if domain.is_FF: m = Poly(coeffs, x, modulus=domain.mod) else: m = Poly(coeffs, x, domain=domain) break return m