"""Tests for computing Galois groups. """ from sympy.abc import x from sympy.combinatorics.galois import ( S1TransitiveSubgroups, S2TransitiveSubgroups, S3TransitiveSubgroups, S4TransitiveSubgroups, S5TransitiveSubgroups, S6TransitiveSubgroups, ) from sympy.polys.domains.rationalfield import QQ from sympy.polys.numberfields.galoisgroups import ( tschirnhausen_transformation, galois_group, _galois_group_degree_4_root_approx, _galois_group_degree_5_hybrid, ) from sympy.polys.numberfields.subfield import field_isomorphism from sympy.polys.polytools import Poly from sympy.testing.pytest import raises def test_tschirnhausen_transformation(): for T in [ Poly(x**2 - 2), Poly(x**2 + x + 1), Poly(x**4 + 1), Poly(x**4 - x**3 + x**2 - x + 1), ]: _, U = tschirnhausen_transformation(T) assert U.degree() == T.degree() assert U.is_monic assert U.is_irreducible K = QQ.alg_field_from_poly(T) L = QQ.alg_field_from_poly(U) assert field_isomorphism(K.ext, L.ext) is not None # Test polys are from: # Cohen, H. *A Course in Computational Algebraic Number Theory*. test_polys_by_deg = { # Degree 1 1: [ (x, S1TransitiveSubgroups.S1, True) ], # Degree 2 2: [ (x**2 + x + 1, S2TransitiveSubgroups.S2, False) ], # Degree 3 3: [ (x**3 + x**2 - 2*x - 1, S3TransitiveSubgroups.A3, True), (x**3 + 2, S3TransitiveSubgroups.S3, False), ], # Degree 4 4: [ (x**4 + x**3 + x**2 + x + 1, S4TransitiveSubgroups.C4, False), (x**4 + 1, S4TransitiveSubgroups.V, True), (x**4 - 2, S4TransitiveSubgroups.D4, False), (x**4 + 8*x + 12, S4TransitiveSubgroups.A4, True), (x**4 + x + 1, S4TransitiveSubgroups.S4, False), ], # Degree 5 5: [ (x**5 + x**4 - 4*x**3 - 3*x**2 + 3*x + 1, S5TransitiveSubgroups.C5, True), (x**5 - 5*x + 12, S5TransitiveSubgroups.D5, True), (x**5 + 2, S5TransitiveSubgroups.M20, False), (x**5 + 20*x + 16, S5TransitiveSubgroups.A5, True), (x**5 - x + 1, S5TransitiveSubgroups.S5, False), ], # Degree 6 6: [ (x**6 + x**5 + x**4 + x**3 + x**2 + x + 1, S6TransitiveSubgroups.C6, False), (x**6 + 108, S6TransitiveSubgroups.S3, False), (x**6 + 2, S6TransitiveSubgroups.D6, False), (x**6 - 3*x**2 - 1, S6TransitiveSubgroups.A4, True), (x**6 + 3*x**3 + 3, S6TransitiveSubgroups.G18, False), (x**6 - 3*x**2 + 1, S6TransitiveSubgroups.A4xC2, False), (x**6 - 4*x**2 - 1, S6TransitiveSubgroups.S4p, True), (x**6 - 3*x**5 + 6*x**4 - 7*x**3 + 2*x**2 + x - 4, S6TransitiveSubgroups.S4m, False), (x**6 + 2*x**3 - 2, S6TransitiveSubgroups.G36m, False), (x**6 + 2*x**2 + 2, S6TransitiveSubgroups.S4xC2, False), (x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 + 170*x + 25, S6TransitiveSubgroups.PSL2F5, True), (x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 - 3019*x + 25, S6TransitiveSubgroups.PGL2F5, False), (x**6 + 6*x**4 + 2*x**3 + 9*x**2 + 6*x - 4, S6TransitiveSubgroups.G36p, True), (x**6 + 2*x**4 + 2*x**3 + x**2 + 2*x + 2, S6TransitiveSubgroups.G72, False), (x**6 + 24*x - 20, S6TransitiveSubgroups.A6, True), (x**6 + x + 1, S6TransitiveSubgroups.S6, False), ], } def test_galois_group(): """ Try all the test polys. """ for deg in range(1, 7): polys = test_polys_by_deg[deg] for T, G, alt in polys: assert galois_group(T, by_name=True) == (G, alt) def test_galois_group_degree_out_of_bounds(): raises(ValueError, lambda: galois_group(Poly(0, x))) raises(ValueError, lambda: galois_group(Poly(1, x))) raises(ValueError, lambda: galois_group(Poly(x ** 7 + 1))) def test_galois_group_not_by_name(): """ Check at least one polynomial of each supported degree, to see that conversion from name to group works. """ for deg in range(1, 7): T, G_name, _ = test_polys_by_deg[deg][0] G, _ = galois_group(T) assert G == G_name.get_perm_group() def test_galois_group_not_monic_over_ZZ(): """ Check that we can work with polys that are not monic over ZZ. """ for deg in range(1, 7): T, G, alt = test_polys_by_deg[deg][0] assert galois_group(T/2, by_name=True) == (G, alt) def test__galois_group_degree_4_root_approx(): for T, G, alt in test_polys_by_deg[4]: assert _galois_group_degree_4_root_approx(Poly(T)) == (G, alt) def test__galois_group_degree_5_hybrid(): for T, G, alt in test_polys_by_deg[5]: assert _galois_group_degree_5_hybrid(Poly(T)) == (G, alt) def test_AlgebraicField_galois_group(): k = QQ.alg_field_from_poly(Poly(x**4 + 1)) G, _ = k.galois_group(by_name=True) assert G == S4TransitiveSubgroups.V k = QQ.alg_field_from_poly(Poly(x**4 - 2)) G, _ = k.galois_group(by_name=True) assert G == S4TransitiveSubgroups.D4