# Generated content DO NOT EDIT class Model: """ Base class for all models The model represents the actual tokenization algorithm. This is the part that will contain and manage the learned vocabulary. This class cannot be constructed directly. Please use one of the concrete models. """ def get_trainer(self): """ Get the associated :class:`~tokenizers.trainers.Trainer` Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this :class:`~tokenizers.models.Model`. Returns: :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model """ pass def id_to_token(self, id): """ Get the token associated to an ID Args: id (:obj:`int`): An ID to convert to a token Returns: :obj:`str`: The token associated to the ID """ pass def save(self, folder, prefix): """ Save the current model Save the current model in the given folder, using the given prefix for the various files that will get created. Any file with the same name that already exists in this folder will be overwritten. Args: folder (:obj:`str`): The path to the target folder in which to save the various files prefix (:obj:`str`, `optional`): An optional prefix, used to prefix each file name Returns: :obj:`List[str]`: The list of saved files """ pass def token_to_id(self, tokens): """ Get the ID associated to a token Args: token (:obj:`str`): A token to convert to an ID Returns: :obj:`int`: The ID associated to the token """ pass def tokenize(self, sequence): """ Tokenize a sequence Args: sequence (:obj:`str`): A sequence to tokenize Returns: A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens """ pass class BPE(Model): """ An implementation of the BPE (Byte-Pair Encoding) algorithm Args: vocab (:obj:`Dict[str, int]`, `optional`): A dictionnary of string keys and their ids :obj:`{"am": 0,...}` merges (:obj:`List[Tuple[str, str]]`, `optional`): A list of pairs of tokens (:obj:`Tuple[str, str]`) :obj:`[("a", "b"),...]` cache_capacity (:obj:`int`, `optional`): The number of words that the BPE cache can contain. The cache allows to speed-up the process by keeping the result of the merge operations for a number of words. dropout (:obj:`float`, `optional`): A float between 0 and 1 that represents the BPE dropout to use. unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. continuing_subword_prefix (:obj:`str`, `optional`): The prefix to attach to subword units that don't represent a beginning of word. end_of_word_suffix (:obj:`str`, `optional`): The suffix to attach to subword units that represent an end of word. fuse_unk (:obj:`bool`, `optional`): Whether to fuse any subsequent unknown tokens into a single one byte_fallback (:obj:`bool`, `optional`): Whether to use spm byte-fallback trick (defaults to False) ignore_merges (:obj:`bool`, `optional`): Whether or not to match tokens with the vocab before using merges. """ def __init__( self, vocab=None, merges=None, cache_capacity=None, dropout=None, unk_token=None, continuing_subword_prefix=None, end_of_word_suffix=None, fuse_unk=None, byte_fallback=False, ignore_merges=False, ): pass @staticmethod def from_file(cls, vocab, merge, **kwargs): """ Instantiate a BPE model from the given files. This method is roughly equivalent to doing:: vocab, merges = BPE.read_file(vocab_filename, merges_filename) bpe = BPE(vocab, merges) If you don't need to keep the :obj:`vocab, merges` values lying around, this method is more optimized than manually calling :meth:`~tokenizers.models.BPE.read_file` to initialize a :class:`~tokenizers.models.BPE` Args: vocab (:obj:`str`): The path to a :obj:`vocab.json` file merges (:obj:`str`): The path to a :obj:`merges.txt` file Returns: :class:`~tokenizers.models.BPE`: An instance of BPE loaded from these files """ pass def get_trainer(self): """ Get the associated :class:`~tokenizers.trainers.Trainer` Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this :class:`~tokenizers.models.Model`. Returns: :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model """ pass def id_to_token(self, id): """ Get the token associated to an ID Args: id (:obj:`int`): An ID to convert to a token Returns: :obj:`str`: The token associated to the ID """ pass @staticmethod def read_file(self, vocab, merges): """ Read a :obj:`vocab.json` and a :obj:`merges.txt` files This method provides a way to read and parse the content of these files, returning the relevant data structures. If you want to instantiate some BPE models from memory, this method gives you the expected input from the standard files. Args: vocab (:obj:`str`): The path to a :obj:`vocab.json` file merges (:obj:`str`): The path to a :obj:`merges.txt` file Returns: A :obj:`Tuple` with the vocab and the merges: The vocabulary and merges loaded into memory """ pass def save(self, folder, prefix): """ Save the current model Save the current model in the given folder, using the given prefix for the various files that will get created. Any file with the same name that already exists in this folder will be overwritten. Args: folder (:obj:`str`): The path to the target folder in which to save the various files prefix (:obj:`str`, `optional`): An optional prefix, used to prefix each file name Returns: :obj:`List[str]`: The list of saved files """ pass def token_to_id(self, tokens): """ Get the ID associated to a token Args: token (:obj:`str`): A token to convert to an ID Returns: :obj:`int`: The ID associated to the token """ pass def tokenize(self, sequence): """ Tokenize a sequence Args: sequence (:obj:`str`): A sequence to tokenize Returns: A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens """ pass class Unigram(Model): """ An implementation of the Unigram algorithm Args: vocab (:obj:`List[Tuple[str, float]]`, `optional`, `optional`): A list of vocabulary items and their relative score [("am", -0.2442),...] """ def __init__(self, vocab, unk_id, byte_fallback): pass def get_trainer(self): """ Get the associated :class:`~tokenizers.trainers.Trainer` Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this :class:`~tokenizers.models.Model`. Returns: :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model """ pass def id_to_token(self, id): """ Get the token associated to an ID Args: id (:obj:`int`): An ID to convert to a token Returns: :obj:`str`: The token associated to the ID """ pass def save(self, folder, prefix): """ Save the current model Save the current model in the given folder, using the given prefix for the various files that will get created. Any file with the same name that already exists in this folder will be overwritten. Args: folder (:obj:`str`): The path to the target folder in which to save the various files prefix (:obj:`str`, `optional`): An optional prefix, used to prefix each file name Returns: :obj:`List[str]`: The list of saved files """ pass def token_to_id(self, tokens): """ Get the ID associated to a token Args: token (:obj:`str`): A token to convert to an ID Returns: :obj:`int`: The ID associated to the token """ pass def tokenize(self, sequence): """ Tokenize a sequence Args: sequence (:obj:`str`): A sequence to tokenize Returns: A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens """ pass class WordLevel(Model): """ An implementation of the WordLevel algorithm Most simple tokenizer model based on mapping tokens to their corresponding id. Args: vocab (:obj:`str`, `optional`): A dictionnary of string keys and their ids :obj:`{"am": 0,...}` unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. """ def __init__(self, vocab, unk_token): pass @staticmethod def from_file(vocab, unk_token): """ Instantiate a WordLevel model from the given file This method is roughly equivalent to doing:: vocab = WordLevel.read_file(vocab_filename) wordlevel = WordLevel(vocab) If you don't need to keep the :obj:`vocab` values lying around, this method is more optimized than manually calling :meth:`~tokenizers.models.WordLevel.read_file` to initialize a :class:`~tokenizers.models.WordLevel` Args: vocab (:obj:`str`): The path to a :obj:`vocab.json` file Returns: :class:`~tokenizers.models.WordLevel`: An instance of WordLevel loaded from file """ pass def get_trainer(self): """ Get the associated :class:`~tokenizers.trainers.Trainer` Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this :class:`~tokenizers.models.Model`. Returns: :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model """ pass def id_to_token(self, id): """ Get the token associated to an ID Args: id (:obj:`int`): An ID to convert to a token Returns: :obj:`str`: The token associated to the ID """ pass @staticmethod def read_file(vocab): """ Read a :obj:`vocab.json` This method provides a way to read and parse the content of a vocabulary file, returning the relevant data structures. If you want to instantiate some WordLevel models from memory, this method gives you the expected input from the standard files. Args: vocab (:obj:`str`): The path to a :obj:`vocab.json` file Returns: :obj:`Dict[str, int]`: The vocabulary as a :obj:`dict` """ pass def save(self, folder, prefix): """ Save the current model Save the current model in the given folder, using the given prefix for the various files that will get created. Any file with the same name that already exists in this folder will be overwritten. Args: folder (:obj:`str`): The path to the target folder in which to save the various files prefix (:obj:`str`, `optional`): An optional prefix, used to prefix each file name Returns: :obj:`List[str]`: The list of saved files """ pass def token_to_id(self, tokens): """ Get the ID associated to a token Args: token (:obj:`str`): A token to convert to an ID Returns: :obj:`int`: The ID associated to the token """ pass def tokenize(self, sequence): """ Tokenize a sequence Args: sequence (:obj:`str`): A sequence to tokenize Returns: A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens """ pass class WordPiece(Model): """ An implementation of the WordPiece algorithm Args: vocab (:obj:`Dict[str, int]`, `optional`): A dictionnary of string keys and their ids :obj:`{"am": 0,...}` unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. max_input_chars_per_word (:obj:`int`, `optional`): The maximum number of characters to authorize in a single word. """ def __init__(self, vocab, unk_token, max_input_chars_per_word): pass @staticmethod def from_file(vocab, **kwargs): """ Instantiate a WordPiece model from the given file This method is roughly equivalent to doing:: vocab = WordPiece.read_file(vocab_filename) wordpiece = WordPiece(vocab) If you don't need to keep the :obj:`vocab` values lying around, this method is more optimized than manually calling :meth:`~tokenizers.models.WordPiece.read_file` to initialize a :class:`~tokenizers.models.WordPiece` Args: vocab (:obj:`str`): The path to a :obj:`vocab.txt` file Returns: :class:`~tokenizers.models.WordPiece`: An instance of WordPiece loaded from file """ pass def get_trainer(self): """ Get the associated :class:`~tokenizers.trainers.Trainer` Retrieve the :class:`~tokenizers.trainers.Trainer` associated to this :class:`~tokenizers.models.Model`. Returns: :class:`~tokenizers.trainers.Trainer`: The Trainer used to train this model """ pass def id_to_token(self, id): """ Get the token associated to an ID Args: id (:obj:`int`): An ID to convert to a token Returns: :obj:`str`: The token associated to the ID """ pass @staticmethod def read_file(vocab): """ Read a :obj:`vocab.txt` file This method provides a way to read and parse the content of a standard `vocab.txt` file as used by the WordPiece Model, returning the relevant data structures. If you want to instantiate some WordPiece models from memory, this method gives you the expected input from the standard files. Args: vocab (:obj:`str`): The path to a :obj:`vocab.txt` file Returns: :obj:`Dict[str, int]`: The vocabulary as a :obj:`dict` """ pass def save(self, folder, prefix): """ Save the current model Save the current model in the given folder, using the given prefix for the various files that will get created. Any file with the same name that already exists in this folder will be overwritten. Args: folder (:obj:`str`): The path to the target folder in which to save the various files prefix (:obj:`str`, `optional`): An optional prefix, used to prefix each file name Returns: :obj:`List[str]`: The list of saved files """ pass def token_to_id(self, tokens): """ Get the ID associated to a token Args: token (:obj:`str`): A token to convert to an ID Returns: :obj:`int`: The ID associated to the token """ pass def tokenize(self, sequence): """ Tokenize a sequence Args: sequence (:obj:`str`): A sequence to tokenize Returns: A :obj:`List` of :class:`~tokenizers.Token`: The generated tokens """ pass