import collections import contextlib import cProfile import dataclasses import functools import itertools import logging import os import os.path import pickle import pstats import shutil import subprocess from typing import Any, Dict, List, Optional from unittest.mock import patch from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled import torch from torch import fx as fx from torch._dynamo.repro.after_aot import save_graph_repro, wrap_compiler_debug from torch._dynamo.utils import get_debug_dir from torch.fx.graph_module import GraphModule from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata from torch.fx.passes.tools_common import legalize_graph from torch.utils._pytree import tree_map from . import config, ir # noqa: F811, this is needed from .scheduler import ( BaseSchedulerNode, FusedSchedulerNode, NopKernelSchedulerNode, OutputNode, SchedulerNode, ) from .virtualized import V log = logging.getLogger(__name__) SchedulerNodeList = List[Any] BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"]) GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"] @functools.lru_cache(None) def has_dot() -> bool: try: subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE) return True except subprocess.SubprocessError: return False def draw_buffers(nodes: List[BaseSchedulerNode], print_graph=False, fname=None): """ Draw a graph in fname.svg. """ if not has_dot(): log.warning("draw_buffers() requires `graphviz` package") return if fname is None: fname = get_graph_being_compiled() graph = create_fx_from_snodes(nodes) for node in graph.nodes: if "fusion_meta" not in node.meta: continue group = node.meta["fusion_meta"].group if isinstance(group, tuple): if isinstance(group[1], int): group = (group[1],) else: group = group[1] # gather meta data dtype = None if isinstance(node, ir.ComputedBuffer): dtype = node.data.dtype metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type] node.meta["tensor_meta"] = metadata if print_graph: print(graph) gm = GraphModule({}, graph) legalize_graph(gm) gm.graph.lint() draw_graph( gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape ) def create_fx_from_snodes(snodes: List[BaseSchedulerNode]) -> fx.Graph: """ Creates a FX Graph from a list of SchedulerNode objects. """ def get_fake_func(name): def func1(*args): return 0 func1.__name__ = name return func1 FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"]) buf_to_fx_node = {} graph = torch.fx.Graph() first_node = None outputs = [] group: Any = None # create call_function node for each Buffer and Kernel for snode in snodes: if snode.is_extern(): node_type = "extern" group = node_type elif snode.is_template(): node_type = "template" group = node_type elif isinstance(snode, NopKernelSchedulerNode): node_type = "nop" group = node_type elif isinstance(snode, SchedulerNode): node_type = "compute" group = snode.group elif isinstance(snode, FusedSchedulerNode): node_type = "fused" group = snode.group else: raise RuntimeError("Unknown node type") fused_name = torch._inductor.utils.get_fused_kernel_name( snode.get_nodes(), "original_aten" ) func_name = f"{node_type}: {fused_name}" node_func = get_fake_func(func_name) kwargs = {} if hasattr(snode, "get_device"): kwargs = {"device": snode.get_device()} fx_node = graph.call_function(node_func, args=(), kwargs=kwargs) def in_output(snode): if isinstance(snode, FusedSchedulerNode): return any(in_output(x) for x in snode.snodes) return any(isinstance(user.node, OutputNode) for user in snode.users) if in_output(snode): outputs.append(fx_node) name = snode.get_name() fx_node.name = name fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type) if isinstance(snode, FusedSchedulerNode): for x in snode.snodes: buf_to_fx_node[x.get_name()] = fx_node buf_to_fx_node[name] = fx_node if first_node is None: first_node = fx_node # create edges between nodes for snode in snodes: name = snode.get_name() deps = snode.read_writes.reads fx_node = buf_to_fx_node[name] new_args = [] for dep in deps: if dep.name in buf_to_fx_node: dep_node = buf_to_fx_node[dep.name] else: with graph.inserting_before(first_node): dep_node = graph.placeholder(dep.name) buf_to_fx_node[dep.name] = dep_node new_args.append(dep_node) fx_node.args = tuple(new_args) graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs)) return graph def update_orig_fx_node_name_to_buf_name( nodes: SchedulerNodeList, node_name_to_buf_name: Dict[str, str], parent_buf_name: Optional[str] = None, n_origins: int = 0, ): if nodes is None: return for node in nodes: # for FusedSchedulerNode, traverse recursively into get_nodes() buf_name = node.get_name() children_nodes = node.get_nodes() if children_nodes is not None and len(children_nodes) > 1: update_orig_fx_node_name_to_buf_name( children_nodes, node_name_to_buf_name, buf_name if parent_buf_name is None else parent_buf_name, ) continue else: assert len(children_nodes) == 1 and children_nodes[0] == node ir_node = node.node if ir_node is None or ir_node.origins is None: continue for origin in ir_node.origins: node_name = origin.name # when buf1 and buf2 both have origin=node1 # we draw node1 according to buf1 if node_name not in node_name_to_buf_name: node_name_to_buf_name[node_name] = ( buf_name if parent_buf_name is None else parent_buf_name ) def get_node_name_to_buf_meta(node_name_to_buf_name: Dict[str, str]): buf_name_to_n_node = {} for node_name, buf_name in node_name_to_buf_name.items(): if buf_name not in buf_name_to_n_node: buf_name_to_n_node[buf_name] = {node_name} else: buf_name_to_n_node[buf_name].add(node_name) node_name_to_buf_meta = {} for node_name, buf_name in node_name_to_buf_name.items(): n_node = len(buf_name_to_n_node[buf_name]) node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node) return node_name_to_buf_meta def annotate_orig_fx_with_snodes( gm: torch.fx.GraphModule, snodes: SchedulerNodeList ) -> None: """ Creates a FX Graph from a list of SchedulerNode objects. """ node_name_to_buf_name: Dict[str, str] = {} update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name) if node_name_to_buf_name is None: return node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name) for node in gm.graph.nodes: if node.name in node_name_to_buf_meta: node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name) @contextlib.contextmanager def enable_aot_logging(): compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1" import torch._functorch.aot_autograd log = logging.getLogger(torch._functorch.aot_autograd.__name__) stack = contextlib.ExitStack() if not compile_debug: try: yield finally: stack.close() return # Enable all graphs to be logged to a file by setting the flags to True # and the log level of the file logger to DEBUG stack.enter_context(patch("functorch.compile.config.debug_partitioner", True)) path = os.path.join(get_debug_dir(), "torchinductor") os.makedirs(path, exist_ok=True) fh = logging.FileHandler( os.path.join( path, f"aot_{get_aot_graph_name()}_debug.log", ) ) fh.setLevel(logging.DEBUG) fh.setFormatter( logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s") ) log.addHandler(fh) try: yield finally: log.removeHandler(fh) stack.close() class DebugContext: _counter = itertools.count() @staticmethod def wrap(fn): @functools.wraps(fn) def inner(*args, **kwargs): with DebugContext(): return fn(*args, **kwargs) return wrap_compiler_debug(inner, compiler_name="inductor") @staticmethod def create_debug_dir(folder_name: str) -> Optional[str]: debug_dir = config.trace.debug_dir or get_debug_dir() for n in DebugContext._counter: dirname = os.path.join( debug_dir, "torchinductor", f"{folder_name}.{n}", ) if not os.path.exists(dirname): os.makedirs(dirname) return dirname return None def __init__(self): self._prof = None self._path = None self._stack = contextlib.ExitStack() def copy(self, new_path: str): if not self._path: return assert new_path.endswith(".debug"), new_path if os.path.exists(new_path): shutil.rmtree(new_path) try: shutil.copytree(self._path, new_path) self._path = new_path except OSError: log.warning( "Failed to copy debug files from %s to %s", self._path, new_path ) pass def fopen(self, filename: str, write_mode: str = "w", *args, **kwargs): assert self._path return open(os.path.join(self._path, filename), write_mode, *args, **kwargs) @contextlib.contextmanager def fopen_context(self, filename: str, write_mode: str = "w", *args, **kwargs): assert self._path with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f: yield f def filename(self, suffix: str): assert self._path return os.path.join(self._path, suffix) def upload_tar(self): if config.trace.upload_tar is not None: import tarfile assert self._path tar_file = os.path.join( self._path, f"{os.path.basename(self._path)}.tar.gz" ) with tarfile.open(tar_file, "w:gz") as tar: tar.add(self._path, arcname=os.path.basename(self._path)) config.trace.upload_tar(tar_file) def __enter__(self): if config.debug: log = logging.getLogger("torch._dynamo") prev_level = log.level log.setLevel(logging.DEBUG) def reset_log_level(level): log.setLevel(level) self._stack.callback(reset_log_level, prev_level) self._stack.enter_context(V.set_debug_handler(self)) if not config.trace.enabled: return self._path = self.create_debug_dir(get_aot_graph_name()) if config.trace.debug_log: self._setup_log_capture("debug.log", logging.DEBUG) if config.trace.info_log: self._setup_log_capture("info.log", logging.INFO) if config.trace.compile_profile: self._prof = cProfile.Profile() self._prof.enable() def _setup_log_capture(self, filename: str, level: int): log = logging.getLogger("torch._inductor") fd = self._stack.enter_context(self.fopen(filename)) ch = logging.StreamHandler(fd) ch.setLevel(level) ch.setFormatter( logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s") ) log.addHandler(ch) log.setLevel(min(log.level, level)) self._stack.callback(log.removeHandler, ch) def __exit__(self, exc_type, exc_val, exc_tb): if self._prof: self._prof.disable() self._save_profile_data() if self._path: self.upload_tar() log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path) self._stack.close() def _save_profile_data(self): assert self._prof self._prof.dump_stats(self.filename("compile.prof")) with self.fopen("compile.stats") as fd: stats = pstats.Stats(self._prof, stream=fd) stats.strip_dirs() stats.sort_stats("cumtime") stats.print_stats(100) stats.sort_stats("tottime") stats.print_stats(100) def __getattr__(self, name): if config.trace.enabled and getattr(config.trace, name): try: return getattr(DebugFormatter(self), name) except Exception: log.warning("Ignoring exception in debug code", exc_info=True) else: def ignored(*args, **kwargs): pass return ignored class DebugFormatter: def __init__(self, handler): self.fopen = handler.fopen self.fopen_context = handler.fopen_context self.filename = handler.filename self.handler = handler def fx_graph(self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]): with self.fopen("fx_graph_runnable.py") as fd: save_graph_repro(fd, gm, inputs, "inductor") with self.fopen("fx_graph_readable.py") as fd: fd.write(gm.print_readable(print_output=False)) def fx_graph_transformed( self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor] ): with self.fopen("fx_graph_transformed.py") as fd: fd.write(gm.print_readable(print_output=False)) def ir_pre_fusion(self, nodes: SchedulerNodeList): self._write_ir("ir_pre_fusion.txt", nodes) def ir_post_fusion(self, nodes: SchedulerNodeList): self._write_ir("ir_post_fusion.txt", nodes) def _write_ir(self, filename: str, nodes: SchedulerNodeList): with self.fopen(filename) as fd: log.info("Writing debug ir to %s", fd.name) for node in nodes: fd.write(node.debug_str()) fd.write("\n\n\n") def graph_diagram(self, nodes: SchedulerNodeList): draw_buffers(nodes, fname=self.filename("graph_diagram.svg")) def draw_orig_fx_graph(self, gm: torch.fx.GraphModule, nodes: SchedulerNodeList): annotate_orig_fx_with_snodes(gm, nodes) draw_graph( gm, fname=self.filename("orig_fx_graph_diagram.svg"), clear_meta=False, prog=GRAPHVIZ_COMMAND_SCALABLE, parse_stack_trace=True, dot_graph_shape=config.trace.dot_graph_shape, ) def output_code(self, filename): shutil.copy(filename, self.filename("output_code.py")) def log_autotuning_results( self, name: str, input_nodes: List[ir.IRNode], timings: Dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821 elapse: float, ): import json from .ir import FixedLayout def build_node_info(node: ir.IRNode): if hasattr(node, "name"): node_name = node.name else: node_name = "" node_info = { "name": node_name, "type": type(node).__name__, } try: layout = node.get_layout() if isinstance(layout, FixedLayout): offset = 0 try: offset = int(layout.offset) except Exception: try: offset = V.graph.sizevars.size_hint( layout.offset, fallback=0 ) except Exception: pass static_layout = FixedLayout( layout.device, dtype=layout.dtype, size=list(V.graph.sizevars.size_hints(layout.size)), stride=list(V.graph.sizevars.size_hints(layout.stride)), offset=offset, ) node_info["layout"] = str(static_layout) else: node_info["layout"] = str(node.get_layout()) except Exception as e: pass try: node_info["dtype"] = str(node.get_dtype()) except Exception as e: pass try: node_info["device"] = str(node.get_device()) except Exception as e: pass try: node_info["stride"] = str( V.graph.sizevars.size_hints(node.get_stride()) ) except Exception as e: pass try: node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size())) except Exception as e: pass try: node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel())) except Exception as e: pass if hasattr(node, "data") and isinstance(node.data, ir.IRNode): node_info["data"] = build_node_info(node.data) return node_info general_properties = { "op_name": name, "cuda_device_name": torch.cuda.get_device_name(), "cuda_device_count": torch.cuda.device_count(), "input_nodes": [build_node_info(node) for node in input_nodes], "autotuning_time": elapse, } with self.fopen_context( "autotuning_result_json_list.txt", "at", encoding="utf-8" ) as fd: for caller, time in timings.items(): info_dict = dict(caller.info_dict()) info_dict.update(general_properties) info_dict["benchmark_result"] = time json.dump(info_dict, fd) fd.write("\n") @dataclasses.dataclass class TensorMetadataHolder: tensor_metadata: TensorMetadata device: torch.device save_args_cnt = itertools.count() def save_args_for_compile_fx_inner(*args, **kwargs): """ This function is used to save arguments for a compile_fx_inner function call to the file system. Later on one can replay the compile_fx_inner call with the saved arguments using load_args_and_run_compile_fx_inner. """ folder = "/tmp/inductor_saved_args" if not os.path.exists(folder): os.mkdir(folder) def handle_tensor(x): """ Pickle FakeTensor will result in error: AttributeError: Can't pickle local object 'WeakValueDictionary.__init__..remove' Convert all Tensor to metadata. This may also makes pickle faster. """ if isinstance(x, torch.Tensor): return TensorMetadataHolder(_extract_tensor_metadata(x), x.device) else: return x args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs)) fn_name = "compile_fx_inner" path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl" with open(path, "wb") as f: pickle.dump((args_to_save, kwargs_to_save), f) if log.isEnabledFor(logging.DEBUG): message = f""" Arguments for a compile_fx_inner call is saved to {path}. To replay the call, run the following: from torch._inductor.debug import load_args_and_run_compile_fx_inner load_args_and_run_compile_fx_inner({path!r}) """ # call print rather than log.debug. log.debug will print message # prefix for each line which makes the code snippet harder to be # copied. # Not a big deal since the code is already been guarded by checking # the log level. print(message) def load_args_and_run_compile_fx_inner(path: str): from torch._inductor.compile_fx import compile_fx_inner with open(path, "rb") as f: args, kwargs = pickle.load(f) def handle_tensor(x): if isinstance(x, TensorMetadataHolder): return torch._dynamo.testing.rand_strided( x.tensor_metadata.shape, x.tensor_metadata.stride, x.tensor_metadata.dtype, x.device, ) else: return x fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True) with fake_mode, config.patch("save_args", False): args, kwargs = tree_map(handle_tensor, (args, kwargs)) return compile_fx_inner(*args, **kwargs)