from __future__ import annotations import itertools import logging import weakref from typing import Any, List, Optional, Tuple import torch import torch.utils._pytree as pytree from torch._dynamo.utils import dynamo_timed, lazy_format_graph_code from torch._functorch.aot_autograd import MutationType from torch._functorch.compile_utils import fx_graph_cse from torch._inductor.constant_folding import constant_fold, replace_node_with_constant from torch._inductor.fx_passes.freezing_patterns import freezing_passes from torch._inductor.fx_passes.post_grad import view_to_reshape from . import config aten = torch.ops.aten prims = torch.ops.prims log = logging.getLogger(__name__) def replace_params_with_constants( gm: torch.fx.GraphModule, flat_params: list[Any], fw_metadata: torch._functorch.aot_autograd.ViewAndMutationMeta, ) -> List[int]: """ Replaces the parameters of a PyTorch GraphModule with constants wherever possible. Returns a list of indices representing the input parameters that were not converted to constants. """ params = [node for node in gm.graph.nodes if node.op == "placeholder"] fake_inp_nodes = params[: len(params)] preserved_arg_indices = [] aliased_input_args = [ out_info.base_idx for out_info in fw_metadata.output_info if out_info.base_idx is not None ] # TODO (tmanlaibaatar) figure out why this is different # from mutated_inp_runtime_indices mutated_inps = [ i for i, m in enumerate(fw_metadata.input_info) if m.mutation_type in (MutationType.MUTATED_IN_GRAPH, MutationType.MUTATED_OUT_GRAPH) ] for i, (real_input, node) in enumerate(zip(flat_params, fake_inp_nodes)): if i in mutated_inps or i in aliased_input_args: preserved_arg_indices.append(i) continue replace_node_with_constant(gm, node, real_input) # add on non param inputs preserved_arg_indices.extend(range(len(flat_params), len(params))) # is this necessary ? gm.recompile() return preserved_arg_indices def freeze( dynamo_gm: torch.fx.GraphModule, aot_autograd_gm: torch.fx.GraphModule, example_inputs: List[torch._subclasses.FakeTensor], ) -> Tuple[torch.fx.GraphModule, List[int]]: """ Inlines parameters that are not mutated into constants and optimizes the graph through constant propagation and other techniques. If enabled, the function also discards the original parameters of the module for memory efficiency. Assumes that this function is run in dynamo tracing post aot_autograd. Args: dynamo_gm (torch.fx.GraphModule): The Dynamo constructed GraphModule. aot_autograd_gm (torch.fx.GraphModule): The aot_autograd constructed GraphModule to be frozen. example_inputs (List[torch.Tensor]): A list of example input tensors to be used in the freezing process. Returns: Tuple[torch.fx.GraphModule, List[int]]: A tuple containing the frozen GraphModule and a list of indices of the inputs that were preserved (not turned into constants). """ # We have convert conv's weight to channels last which may meet error for .view # when doing fake_tensor_prop. So we need to convert view to reshape first. # See the details in fx_codegen_and_compile of compile_fx.py. view_to_reshape(aot_autograd_gm) if tracing_context := torch._guards.TracingContext.try_get(): fw_metadata = tracing_context.fw_metadata params_flat = tracing_context.params_flat assert fw_metadata is not None and params_flat is not None preserved_arg_indices = replace_params_with_constants( aot_autograd_gm, params_flat, fw_metadata ) else: inputs = [ node for node in aot_autograd_gm.graph.nodes if node.op == "placeholder" ] preserved_arg_indices = list(range(len(inputs))) # TODO - further restrict cse ? right now needed to dedup aliasing ops cse_graph = fx_graph_cse(aot_autograd_gm.graph) aot_autograd_gm.graph = cse_graph aot_autograd_gm.recompile() aot_example_inputs = [example_inputs[ind] for ind in preserved_arg_indices] freezing_passes(aot_autograd_gm, aot_example_inputs) constant_fold(aot_autograd_gm) # invalidate nn Modules if config.freezing_discard_parameters: invalidate_eager_modules() discard_traced_gm_params(dynamo_gm) log.debug("%s", lazy_format_graph_code("FROZEN GRAPH", aot_autograd_gm)) return aot_autograd_gm, preserved_arg_indices class ErasedTensor(torch.Tensor): @staticmethod def __new__(cls, elem, name, owning_mod): return super().__new__(cls, elem.to(device="meta")) def __init__(self, elem, name: Optional[str], mod): self.erased_name = name self.owning_mod_ref = weakref.ref(mod) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): erased_tensors = [ e for e in pytree.arg_tree_leaves(*args, **kwargs) if isinstance(e, ErasedTensor) ] assert len(erased_tensors) > 0 e = erased_tensors[0] raise RuntimeError( f"Trying to run Pytorch Eager Module after Dynamo Freezing. " "The original parameters have been discarded for memory efficiency. " f"Found in op {func} for erased parameter {e.erased_name} of {e.owning_mod_ref()}" ) @torch.utils._python_dispatch._disable_current_modes() def invalidate_eager_modules(): for mod in torch._guards.TracingContext.get().module_context.nn_modules.values(): if not isinstance(mod, torch.nn.Module): continue for attr_name, tensor in list( itertools.chain( mod.named_parameters(recurse=False), mod.named_buffers(recurse=False) ) ): with torch._dispatch.python.no_python_dispatcher(): e_t = ErasedTensor(tensor, attr_name, mod) if isinstance(tensor, torch.nn.Parameter): e_t.requires_grad_(True) e_t._is_param = True # type: ignore[attr-defined] setattr(mod, attr_name, e_t) @torch.utils._python_dispatch._disable_current_modes() def discard_traced_gm_params(mod: torch.fx.GraphModule): for attr_name, tensor in list( itertools.chain( mod.named_parameters(recurse=False), mod.named_buffers(recurse=False) ) ): with torch._dispatch.python.no_python_dispatcher(): e_t = ErasedTensor(tensor, attr_name, mod) if isinstance(tensor, torch.nn.Parameter): e_t.requires_grad_(True) e_t._is_param = True # type: ignore[attr-defined] setattr(mod, attr_name, e_t) def enforce_output_layout(gm: torch.fx.GraphModule): """ Make sure the output node's layout does not change due to compiler optimizations by adding aten.as_strided nodes with the expected strides. Only used for inference so we can assume all graph outputs are model outputs. """ *_, output_node = gm.graph.nodes out_list = output_node.args[0] with gm.graph.inserting_before(output_node): for n in out_list: if not isinstance( n.meta["val"], torch.Tensor ) or not torch._prims_common.is_non_overlapping_and_dense(n.meta["val"]): continue # add a node to enforce eager layout ft = n.meta["val"] new_node = gm.graph.call_function( prims.inductor_force_stride_order.default, (n, ft.stride()) ) # can not call # n.replace_all_uses_with(new_node) # since it will replace the usage of n in new_node itself. output_node.replace_input_with(n, new_node) gm.graph.lint() gm.recompile() def enforce_as_strided_input_layout(gm: torch.fx.GraphModule): """ Make sure the as_strided node's input's layout does not change due to compiler optimizations, because the as_strided strides info depends on input tensor stride info. """ as_strided_ops = [ torch.ops.aten.as_strided.default, torch.ops.aten.as_strided_.default, torch.ops.aten.as_strided_scatter.default, ] strided_nodes = [n for n in gm.graph.nodes if n.target in as_strided_ops] for n in strided_nodes: with gm.graph.inserting_before(n): # add a node to enforce eager layout ft = n.args[0].meta["val"] new_node = gm.graph.call_function( prims.inductor_force_stride_order.default, (n.args[0], ft.stride()) ) n.replace_input_with(n.args[0], new_node) gm.graph.lint() gm.recompile() @dynamo_timed def convert_conv_weights_to_channels_last(gm: torch.fx.GraphModule): """ Convert 4d convolution weight tensor to channels last format. This pass is performed before freezing so the added nodes can be constant folded by freezing. """ convs = [n for n in gm.graph.nodes if n.target == aten.convolution.default] for conv in convs: weight_node = conv.args[1] if len(weight_node.meta["val"].size()) != 4 or weight_node.meta[ "val" ].is_contiguous(memory_format=torch.channels_last): # not a 4d tensor or already channels last, skip continue with gm.graph.inserting_before(conv): new_node = gm.graph.call_function( aten.clone.default, (weight_node,), {"memory_format": torch.channels_last}, ) conv.replace_input_with(weight_node, new_node) enforce_as_strided_input_layout(gm) enforce_output_layout(gm)