"""Adds docstrings to Tensor functions""" import torch._C from torch._C import _add_docstr as add_docstr from torch._torch_docs import parse_kwargs, reproducibility_notes def add_docstr_all(method, docstr): add_docstr(getattr(torch._C.TensorBase, method), docstr) common_args = parse_kwargs( """ memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ ) new_common_args = parse_kwargs( """ size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. Default: if None, same :class:`torch.dtype` as this tensor. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, same :class:`torch.device` as this tensor. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. """ ) add_docstr_all( "new_tensor", """ new_tensor(data, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ pin_memory=False) -> Tensor """ + r""" Returns a new Tensor with :attr:`data` as the tensor data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. .. warning:: :func:`new_tensor` always copies :attr:`data`. If you have a Tensor ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` or :func:`torch.Tensor.detach`. If you have a numpy array and want to avoid a copy, use :func:`torch.from_numpy`. .. warning:: When data is a tensor `x`, :func:`new_tensor()` reads out 'the data' from whatever it is passed, and constructs a leaf variable. Therefore ``tensor.new_tensor(x)`` is equivalent to ``x.clone().detach()`` and ``tensor.new_tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``. The equivalents using ``clone()`` and ``detach()`` are recommended. Args: data (array_like): The returned Tensor copies :attr:`data`. Keyword args: {dtype} {device} {requires_grad} {layout} {pin_memory} Example:: >>> tensor = torch.ones((2,), dtype=torch.int8) >>> data = [[0, 1], [2, 3]] >>> tensor.new_tensor(data) tensor([[ 0, 1], [ 2, 3]], dtype=torch.int8) """.format( **new_common_args ), ) add_docstr_all( "new_full", """ new_full(size, fill_value, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ pin_memory=False) -> Tensor """ + r""" Returns a Tensor of size :attr:`size` filled with :attr:`fill_value`. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: fill_value (scalar): the number to fill the output tensor with. Keyword args: {dtype} {device} {requires_grad} {layout} {pin_memory} Example:: >>> tensor = torch.ones((2,), dtype=torch.float64) >>> tensor.new_full((3, 4), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416, 3.1416]], dtype=torch.float64) """.format( **new_common_args ), ) add_docstr_all( "new_empty", """ new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ pin_memory=False) -> Tensor """ + r""" Returns a Tensor of size :attr:`size` filled with uninitialized data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: {dtype} {device} {requires_grad} {layout} {pin_memory} Example:: >>> tensor = torch.ones(()) >>> tensor.new_empty((2, 3)) tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) """.format( **new_common_args ), ) add_docstr_all( "new_empty_strided", """ new_empty_strided(size, stride, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ pin_memory=False) -> Tensor """ + r""" Returns a Tensor of size :attr:`size` and strides :attr:`stride` filled with uninitialized data. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: {dtype} {device} {requires_grad} {layout} {pin_memory} Example:: >>> tensor = torch.ones(()) >>> tensor.new_empty_strided((2, 3), (3, 1)) tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) """.format( **new_common_args ), ) add_docstr_all( "new_ones", """ new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ pin_memory=False) -> Tensor """ + r""" Returns a Tensor of size :attr:`size` filled with ``1``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: {dtype} {device} {requires_grad} {layout} {pin_memory} Example:: >>> tensor = torch.tensor((), dtype=torch.int32) >>> tensor.new_ones((2, 3)) tensor([[ 1, 1, 1], [ 1, 1, 1]], dtype=torch.int32) """.format( **new_common_args ), ) add_docstr_all( "new_zeros", """ new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ pin_memory=False) -> Tensor """ + r""" Returns a Tensor of size :attr:`size` filled with ``0``. By default, the returned Tensor has the same :class:`torch.dtype` and :class:`torch.device` as this tensor. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. Keyword args: {dtype} {device} {requires_grad} {layout} {pin_memory} Example:: >>> tensor = torch.tensor((), dtype=torch.float64) >>> tensor.new_zeros((2, 3)) tensor([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=torch.float64) """.format( **new_common_args ), ) add_docstr_all( "abs", r""" abs() -> Tensor See :func:`torch.abs` """, ) add_docstr_all( "abs_", r""" abs_() -> Tensor In-place version of :meth:`~Tensor.abs` """, ) add_docstr_all( "absolute", r""" absolute() -> Tensor Alias for :func:`abs` """, ) add_docstr_all( "absolute_", r""" absolute_() -> Tensor In-place version of :meth:`~Tensor.absolute` Alias for :func:`abs_` """, ) add_docstr_all( "acos", r""" acos() -> Tensor See :func:`torch.acos` """, ) add_docstr_all( "acos_", r""" acos_() -> Tensor In-place version of :meth:`~Tensor.acos` """, ) add_docstr_all( "arccos", r""" arccos() -> Tensor See :func:`torch.arccos` """, ) add_docstr_all( "arccos_", r""" arccos_() -> Tensor In-place version of :meth:`~Tensor.arccos` """, ) add_docstr_all( "acosh", r""" acosh() -> Tensor See :func:`torch.acosh` """, ) add_docstr_all( "acosh_", r""" acosh_() -> Tensor In-place version of :meth:`~Tensor.acosh` """, ) add_docstr_all( "arccosh", r""" acosh() -> Tensor See :func:`torch.arccosh` """, ) add_docstr_all( "arccosh_", r""" acosh_() -> Tensor In-place version of :meth:`~Tensor.arccosh` """, ) add_docstr_all( "add", r""" add(other, *, alpha=1) -> Tensor Add a scalar or tensor to :attr:`self` tensor. If both :attr:`alpha` and :attr:`other` are specified, each element of :attr:`other` is scaled by :attr:`alpha` before being used. When :attr:`other` is a tensor, the shape of :attr:`other` must be :ref:`broadcastable ` with the shape of the underlying tensor See :func:`torch.add` """, ) add_docstr_all( "add_", r""" add_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.add` """, ) add_docstr_all( "addbmm", r""" addbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor See :func:`torch.addbmm` """, ) add_docstr_all( "addbmm_", r""" addbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addbmm` """, ) add_docstr_all( "addcdiv", r""" addcdiv(tensor1, tensor2, *, value=1) -> Tensor See :func:`torch.addcdiv` """, ) add_docstr_all( "addcdiv_", r""" addcdiv_(tensor1, tensor2, *, value=1) -> Tensor In-place version of :meth:`~Tensor.addcdiv` """, ) add_docstr_all( "addcmul", r""" addcmul(tensor1, tensor2, *, value=1) -> Tensor See :func:`torch.addcmul` """, ) add_docstr_all( "addcmul_", r""" addcmul_(tensor1, tensor2, *, value=1) -> Tensor In-place version of :meth:`~Tensor.addcmul` """, ) add_docstr_all( "addmm", r""" addmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor See :func:`torch.addmm` """, ) add_docstr_all( "addmm_", r""" addmm_(mat1, mat2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addmm` """, ) add_docstr_all( "addmv", r""" addmv(mat, vec, *, beta=1, alpha=1) -> Tensor See :func:`torch.addmv` """, ) add_docstr_all( "addmv_", r""" addmv_(mat, vec, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addmv` """, ) add_docstr_all( "sspaddmm", r""" sspaddmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor See :func:`torch.sspaddmm` """, ) add_docstr_all( "smm", r""" smm(mat) -> Tensor See :func:`torch.smm` """, ) add_docstr_all( "addr", r""" addr(vec1, vec2, *, beta=1, alpha=1) -> Tensor See :func:`torch.addr` """, ) add_docstr_all( "addr_", r""" addr_(vec1, vec2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.addr` """, ) add_docstr_all( "align_as", r""" align_as(other) -> Tensor Permutes the dimensions of the :attr:`self` tensor to match the dimension order in the :attr:`other` tensor, adding size-one dims for any new names. This operation is useful for explicit broadcasting by names (see examples). All of the dims of :attr:`self` must be named in order to use this method. The resulting tensor is a view on the original tensor. All dimension names of :attr:`self` must be present in ``other.names``. :attr:`other` may contain named dimensions that are not in ``self.names``; the output tensor has a size-one dimension for each of those new names. To align a tensor to a specific order, use :meth:`~Tensor.align_to`. Examples:: # Example 1: Applying a mask >>> mask = torch.randint(2, [127, 128], dtype=torch.bool).refine_names('W', 'H') >>> imgs = torch.randn(32, 128, 127, 3, names=('N', 'H', 'W', 'C')) >>> imgs.masked_fill_(mask.align_as(imgs), 0) # Example 2: Applying a per-channel-scale >>> def scale_channels(input, scale): >>> scale = scale.refine_names('C') >>> return input * scale.align_as(input) >>> num_channels = 3 >>> scale = torch.randn(num_channels, names=('C',)) >>> imgs = torch.rand(32, 128, 128, num_channels, names=('N', 'H', 'W', 'C')) >>> more_imgs = torch.rand(32, num_channels, 128, 128, names=('N', 'C', 'H', 'W')) >>> videos = torch.randn(3, num_channels, 128, 128, 128, names=('N', 'C', 'H', 'W', 'D')) # scale_channels is agnostic to the dimension order of the input >>> scale_channels(imgs, scale) >>> scale_channels(more_imgs, scale) >>> scale_channels(videos, scale) .. warning:: The named tensor API is experimental and subject to change. """, ) add_docstr_all( "all", r""" all(dim=None, keepdim=False) -> Tensor See :func:`torch.all` """, ) add_docstr_all( "allclose", r""" allclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor See :func:`torch.allclose` """, ) add_docstr_all( "angle", r""" angle() -> Tensor See :func:`torch.angle` """, ) add_docstr_all( "any", r""" any(dim=None, keepdim=False) -> Tensor See :func:`torch.any` """, ) add_docstr_all( "apply_", r""" apply_(callable) -> Tensor Applies the function :attr:`callable` to each element in the tensor, replacing each element with the value returned by :attr:`callable`. .. note:: This function only works with CPU tensors and should not be used in code sections that require high performance. """, ) add_docstr_all( "asin", r""" asin() -> Tensor See :func:`torch.asin` """, ) add_docstr_all( "asin_", r""" asin_() -> Tensor In-place version of :meth:`~Tensor.asin` """, ) add_docstr_all( "arcsin", r""" arcsin() -> Tensor See :func:`torch.arcsin` """, ) add_docstr_all( "arcsin_", r""" arcsin_() -> Tensor In-place version of :meth:`~Tensor.arcsin` """, ) add_docstr_all( "asinh", r""" asinh() -> Tensor See :func:`torch.asinh` """, ) add_docstr_all( "asinh_", r""" asinh_() -> Tensor In-place version of :meth:`~Tensor.asinh` """, ) add_docstr_all( "arcsinh", r""" arcsinh() -> Tensor See :func:`torch.arcsinh` """, ) add_docstr_all( "arcsinh_", r""" arcsinh_() -> Tensor In-place version of :meth:`~Tensor.arcsinh` """, ) add_docstr_all( "as_strided", r""" as_strided(size, stride, storage_offset=None) -> Tensor See :func:`torch.as_strided` """, ) add_docstr_all( "as_strided_", r""" as_strided_(size, stride, storage_offset=None) -> Tensor In-place version of :meth:`~Tensor.as_strided` """, ) add_docstr_all( "atan", r""" atan() -> Tensor See :func:`torch.atan` """, ) add_docstr_all( "atan_", r""" atan_() -> Tensor In-place version of :meth:`~Tensor.atan` """, ) add_docstr_all( "arctan", r""" arctan() -> Tensor See :func:`torch.arctan` """, ) add_docstr_all( "arctan_", r""" arctan_() -> Tensor In-place version of :meth:`~Tensor.arctan` """, ) add_docstr_all( "atan2", r""" atan2(other) -> Tensor See :func:`torch.atan2` """, ) add_docstr_all( "atan2_", r""" atan2_(other) -> Tensor In-place version of :meth:`~Tensor.atan2` """, ) add_docstr_all( "arctan2", r""" arctan2(other) -> Tensor See :func:`torch.arctan2` """, ) add_docstr_all( "arctan2_", r""" atan2_(other) -> Tensor In-place version of :meth:`~Tensor.arctan2` """, ) add_docstr_all( "atanh", r""" atanh() -> Tensor See :func:`torch.atanh` """, ) add_docstr_all( "atanh_", r""" atanh_(other) -> Tensor In-place version of :meth:`~Tensor.atanh` """, ) add_docstr_all( "arctanh", r""" arctanh() -> Tensor See :func:`torch.arctanh` """, ) add_docstr_all( "arctanh_", r""" arctanh_(other) -> Tensor In-place version of :meth:`~Tensor.arctanh` """, ) add_docstr_all( "baddbmm", r""" baddbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor See :func:`torch.baddbmm` """, ) add_docstr_all( "baddbmm_", r""" baddbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor In-place version of :meth:`~Tensor.baddbmm` """, ) add_docstr_all( "bernoulli", r""" bernoulli(*, generator=None) -> Tensor Returns a result tensor where each :math:`\texttt{result[i]}` is independently sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have floating point ``dtype``, and the result will have the same ``dtype``. See :func:`torch.bernoulli` """, ) add_docstr_all( "bernoulli_", r""" bernoulli_(p=0.5, *, generator=None) -> Tensor Fills each location of :attr:`self` with an independent sample from :math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral ``dtype``. :attr:`p` should either be a scalar or tensor containing probabilities to be used for drawing the binary random number. If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor will be set to a value sampled from :math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have floating point ``dtype``. See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli` """, ) add_docstr_all( "bincount", r""" bincount(weights=None, minlength=0) -> Tensor See :func:`torch.bincount` """, ) add_docstr_all( "bitwise_not", r""" bitwise_not() -> Tensor See :func:`torch.bitwise_not` """, ) add_docstr_all( "bitwise_not_", r""" bitwise_not_() -> Tensor In-place version of :meth:`~Tensor.bitwise_not` """, ) add_docstr_all( "bitwise_and", r""" bitwise_and() -> Tensor See :func:`torch.bitwise_and` """, ) add_docstr_all( "bitwise_and_", r""" bitwise_and_() -> Tensor In-place version of :meth:`~Tensor.bitwise_and` """, ) add_docstr_all( "bitwise_or", r""" bitwise_or() -> Tensor See :func:`torch.bitwise_or` """, ) add_docstr_all( "bitwise_or_", r""" bitwise_or_() -> Tensor In-place version of :meth:`~Tensor.bitwise_or` """, ) add_docstr_all( "bitwise_xor", r""" bitwise_xor() -> Tensor See :func:`torch.bitwise_xor` """, ) add_docstr_all( "bitwise_xor_", r""" bitwise_xor_() -> Tensor In-place version of :meth:`~Tensor.bitwise_xor` """, ) add_docstr_all( "bitwise_left_shift", r""" bitwise_left_shift(other) -> Tensor See :func:`torch.bitwise_left_shift` """, ) add_docstr_all( "bitwise_left_shift_", r""" bitwise_left_shift_(other) -> Tensor In-place version of :meth:`~Tensor.bitwise_left_shift` """, ) add_docstr_all( "bitwise_right_shift", r""" bitwise_right_shift(other) -> Tensor See :func:`torch.bitwise_right_shift` """, ) add_docstr_all( "bitwise_right_shift_", r""" bitwise_right_shift_(other) -> Tensor In-place version of :meth:`~Tensor.bitwise_right_shift` """, ) add_docstr_all( "broadcast_to", r""" broadcast_to(shape) -> Tensor See :func:`torch.broadcast_to`. """, ) add_docstr_all( "logical_and", r""" logical_and() -> Tensor See :func:`torch.logical_and` """, ) add_docstr_all( "logical_and_", r""" logical_and_() -> Tensor In-place version of :meth:`~Tensor.logical_and` """, ) add_docstr_all( "logical_not", r""" logical_not() -> Tensor See :func:`torch.logical_not` """, ) add_docstr_all( "logical_not_", r""" logical_not_() -> Tensor In-place version of :meth:`~Tensor.logical_not` """, ) add_docstr_all( "logical_or", r""" logical_or() -> Tensor See :func:`torch.logical_or` """, ) add_docstr_all( "logical_or_", r""" logical_or_() -> Tensor In-place version of :meth:`~Tensor.logical_or` """, ) add_docstr_all( "logical_xor", r""" logical_xor() -> Tensor See :func:`torch.logical_xor` """, ) add_docstr_all( "logical_xor_", r""" logical_xor_() -> Tensor In-place version of :meth:`~Tensor.logical_xor` """, ) add_docstr_all( "bmm", r""" bmm(batch2) -> Tensor See :func:`torch.bmm` """, ) add_docstr_all( "cauchy_", r""" cauchy_(median=0, sigma=1, *, generator=None) -> Tensor Fills the tensor with numbers drawn from the Cauchy distribution: .. math:: f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2} .. note:: Sigma (:math:`\sigma`) is used to denote the scale parameter in Cauchy distribution. """, ) add_docstr_all( "ceil", r""" ceil() -> Tensor See :func:`torch.ceil` """, ) add_docstr_all( "ceil_", r""" ceil_() -> Tensor In-place version of :meth:`~Tensor.ceil` """, ) add_docstr_all( "cholesky", r""" cholesky(upper=False) -> Tensor See :func:`torch.cholesky` """, ) add_docstr_all( "cholesky_solve", r""" cholesky_solve(input2, upper=False) -> Tensor See :func:`torch.cholesky_solve` """, ) add_docstr_all( "cholesky_inverse", r""" cholesky_inverse(upper=False) -> Tensor See :func:`torch.cholesky_inverse` """, ) add_docstr_all( "clamp", r""" clamp(min=None, max=None) -> Tensor See :func:`torch.clamp` """, ) add_docstr_all( "clamp_", r""" clamp_(min=None, max=None) -> Tensor In-place version of :meth:`~Tensor.clamp` """, ) add_docstr_all( "clip", r""" clip(min=None, max=None) -> Tensor Alias for :meth:`~Tensor.clamp`. """, ) add_docstr_all( "clip_", r""" clip_(min=None, max=None) -> Tensor Alias for :meth:`~Tensor.clamp_`. """, ) add_docstr_all( "clone", r""" clone(*, memory_format=torch.preserve_format) -> Tensor See :func:`torch.clone` """.format( **common_args ), ) add_docstr_all( "coalesce", r""" coalesce() -> Tensor Returns a coalesced copy of :attr:`self` if :attr:`self` is an :ref:`uncoalesced tensor `. Returns :attr:`self` if :attr:`self` is a coalesced tensor. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. """, ) add_docstr_all( "contiguous", r""" contiguous(memory_format=torch.contiguous_format) -> Tensor Returns a contiguous in memory tensor containing the same data as :attr:`self` tensor. If :attr:`self` tensor is already in the specified memory format, this function returns the :attr:`self` tensor. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.contiguous_format``. """, ) add_docstr_all( "copy_", r""" copy_(src, non_blocking=False) -> Tensor Copies the elements from :attr:`src` into :attr:`self` tensor and returns :attr:`self`. The :attr:`src` tensor must be :ref:`broadcastable ` with the :attr:`self` tensor. It may be of a different data type or reside on a different device. Args: src (Tensor): the source tensor to copy from non_blocking (bool): if ``True`` and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. """, ) add_docstr_all( "conj", r""" conj() -> Tensor See :func:`torch.conj` """, ) add_docstr_all( "conj_physical", r""" conj_physical() -> Tensor See :func:`torch.conj_physical` """, ) add_docstr_all( "conj_physical_", r""" conj_physical_() -> Tensor In-place version of :meth:`~Tensor.conj_physical` """, ) add_docstr_all( "resolve_conj", r""" resolve_conj() -> Tensor See :func:`torch.resolve_conj` """, ) add_docstr_all( "resolve_neg", r""" resolve_neg() -> Tensor See :func:`torch.resolve_neg` """, ) add_docstr_all( "copysign", r""" copysign(other) -> Tensor See :func:`torch.copysign` """, ) add_docstr_all( "copysign_", r""" copysign_(other) -> Tensor In-place version of :meth:`~Tensor.copysign` """, ) add_docstr_all( "cos", r""" cos() -> Tensor See :func:`torch.cos` """, ) add_docstr_all( "cos_", r""" cos_() -> Tensor In-place version of :meth:`~Tensor.cos` """, ) add_docstr_all( "cosh", r""" cosh() -> Tensor See :func:`torch.cosh` """, ) add_docstr_all( "cosh_", r""" cosh_() -> Tensor In-place version of :meth:`~Tensor.cosh` """, ) add_docstr_all( "cpu", r""" cpu(memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in CPU memory. If this object is already in CPU memory and on the correct device, then no copy is performed and the original object is returned. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "count_nonzero", r""" count_nonzero(dim=None) -> Tensor See :func:`torch.count_nonzero` """, ) add_docstr_all( "cov", r""" cov(*, correction=1, fweights=None, aweights=None) -> Tensor See :func:`torch.cov` """, ) add_docstr_all( "corrcoef", r""" corrcoef() -> Tensor See :func:`torch.corrcoef` """, ) add_docstr_all( "cross", r""" cross(other, dim=None) -> Tensor See :func:`torch.cross` """, ) add_docstr_all( "cuda", r""" cuda(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in CUDA memory. If this object is already in CUDA memory and on the correct device, then no copy is performed and the original object is returned. Args: device (:class:`torch.device`): The destination GPU device. Defaults to the current CUDA device. non_blocking (bool): If ``True`` and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: ``False``. {memory_format} """.format( **common_args ), ) add_docstr_all( "ipu", r""" ipu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in IPU memory. If this object is already in IPU memory and on the correct device, then no copy is performed and the original object is returned. Args: device (:class:`torch.device`): The destination IPU device. Defaults to the current IPU device. non_blocking (bool): If ``True`` and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: ``False``. {memory_format} """.format( **common_args ), ) add_docstr_all( "xpu", r""" xpu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor Returns a copy of this object in XPU memory. If this object is already in XPU memory and on the correct device, then no copy is performed and the original object is returned. Args: device (:class:`torch.device`): The destination XPU device. Defaults to the current XPU device. non_blocking (bool): If ``True`` and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: ``False``. {memory_format} """.format( **common_args ), ) add_docstr_all( "logcumsumexp", r""" logcumsumexp(dim) -> Tensor See :func:`torch.logcumsumexp` """, ) add_docstr_all( "cummax", r""" cummax(dim) -> (Tensor, Tensor) See :func:`torch.cummax` """, ) add_docstr_all( "cummin", r""" cummin(dim) -> (Tensor, Tensor) See :func:`torch.cummin` """, ) add_docstr_all( "cumprod", r""" cumprod(dim, dtype=None) -> Tensor See :func:`torch.cumprod` """, ) add_docstr_all( "cumprod_", r""" cumprod_(dim, dtype=None) -> Tensor In-place version of :meth:`~Tensor.cumprod` """, ) add_docstr_all( "cumsum", r""" cumsum(dim, dtype=None) -> Tensor See :func:`torch.cumsum` """, ) add_docstr_all( "cumsum_", r""" cumsum_(dim, dtype=None) -> Tensor In-place version of :meth:`~Tensor.cumsum` """, ) add_docstr_all( "data_ptr", r""" data_ptr() -> int Returns the address of the first element of :attr:`self` tensor. """, ) add_docstr_all( "dequantize", r""" dequantize() -> Tensor Given a quantized Tensor, dequantize it and return the dequantized float Tensor. """, ) add_docstr_all( "dense_dim", r""" dense_dim() -> int Return the number of dense dimensions in a :ref:`sparse tensor ` :attr:`self`. .. note:: Returns ``len(self.shape)`` if :attr:`self` is not a sparse tensor. See also :meth:`Tensor.sparse_dim` and :ref:`hybrid tensors `. """, ) add_docstr_all( "diag", r""" diag(diagonal=0) -> Tensor See :func:`torch.diag` """, ) add_docstr_all( "diag_embed", r""" diag_embed(offset=0, dim1=-2, dim2=-1) -> Tensor See :func:`torch.diag_embed` """, ) add_docstr_all( "diagflat", r""" diagflat(offset=0) -> Tensor See :func:`torch.diagflat` """, ) add_docstr_all( "diagonal", r""" diagonal(offset=0, dim1=0, dim2=1) -> Tensor See :func:`torch.diagonal` """, ) add_docstr_all( "diagonal_scatter", r""" diagonal_scatter(src, offset=0, dim1=0, dim2=1) -> Tensor See :func:`torch.diagonal_scatter` """, ) add_docstr_all( "as_strided_scatter", r""" as_strided_scatter(src, size, stride, storage_offset=None) -> Tensor See :func:`torch.as_strided_scatter` """, ) add_docstr_all( "fill_diagonal_", r""" fill_diagonal_(fill_value, wrap=False) -> Tensor Fill the main diagonal of a tensor that has at least 2-dimensions. When dims>2, all dimensions of input must be of equal length. This function modifies the input tensor in-place, and returns the input tensor. Arguments: fill_value (Scalar): the fill value wrap (bool): the diagonal 'wrapped' after N columns for tall matrices. Example:: >>> a = torch.zeros(3, 3) >>> a.fill_diagonal_(5) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.]]) >>> b = torch.zeros(7, 3) >>> b.fill_diagonal_(5) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> c = torch.zeros(7, 3) >>> c.fill_diagonal_(5, wrap=True) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.], [0., 0., 0.], [5., 0., 0.], [0., 5., 0.], [0., 0., 5.]]) """, ) add_docstr_all( "floor_divide", r""" floor_divide(value) -> Tensor See :func:`torch.floor_divide` """, ) add_docstr_all( "floor_divide_", r""" floor_divide_(value) -> Tensor In-place version of :meth:`~Tensor.floor_divide` """, ) add_docstr_all( "diff", r""" diff(n=1, dim=-1, prepend=None, append=None) -> Tensor See :func:`torch.diff` """, ) add_docstr_all( "digamma", r""" digamma() -> Tensor See :func:`torch.digamma` """, ) add_docstr_all( "digamma_", r""" digamma_() -> Tensor In-place version of :meth:`~Tensor.digamma` """, ) add_docstr_all( "dim", r""" dim() -> int Returns the number of dimensions of :attr:`self` tensor. """, ) add_docstr_all( "dist", r""" dist(other, p=2) -> Tensor See :func:`torch.dist` """, ) add_docstr_all( "div", r""" div(value, *, rounding_mode=None) -> Tensor See :func:`torch.div` """, ) add_docstr_all( "div_", r""" div_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.div` """, ) add_docstr_all( "divide", r""" divide(value, *, rounding_mode=None) -> Tensor See :func:`torch.divide` """, ) add_docstr_all( "divide_", r""" divide_(value, *, rounding_mode=None) -> Tensor In-place version of :meth:`~Tensor.divide` """, ) add_docstr_all( "dot", r""" dot(other) -> Tensor See :func:`torch.dot` """, ) add_docstr_all( "element_size", r""" element_size() -> int Returns the size in bytes of an individual element. Example:: >>> torch.tensor([]).element_size() 4 >>> torch.tensor([], dtype=torch.uint8).element_size() 1 """, ) add_docstr_all( "eq", r""" eq(other) -> Tensor See :func:`torch.eq` """, ) add_docstr_all( "eq_", r""" eq_(other) -> Tensor In-place version of :meth:`~Tensor.eq` """, ) add_docstr_all( "equal", r""" equal(other) -> bool See :func:`torch.equal` """, ) add_docstr_all( "erf", r""" erf() -> Tensor See :func:`torch.erf` """, ) add_docstr_all( "erf_", r""" erf_() -> Tensor In-place version of :meth:`~Tensor.erf` """, ) add_docstr_all( "erfc", r""" erfc() -> Tensor See :func:`torch.erfc` """, ) add_docstr_all( "erfc_", r""" erfc_() -> Tensor In-place version of :meth:`~Tensor.erfc` """, ) add_docstr_all( "erfinv", r""" erfinv() -> Tensor See :func:`torch.erfinv` """, ) add_docstr_all( "erfinv_", r""" erfinv_() -> Tensor In-place version of :meth:`~Tensor.erfinv` """, ) add_docstr_all( "exp", r""" exp() -> Tensor See :func:`torch.exp` """, ) add_docstr_all( "exp_", r""" exp_() -> Tensor In-place version of :meth:`~Tensor.exp` """, ) add_docstr_all( "exp2", r""" exp2() -> Tensor See :func:`torch.exp2` """, ) add_docstr_all( "exp2_", r""" exp2_() -> Tensor In-place version of :meth:`~Tensor.exp2` """, ) add_docstr_all( "expm1", r""" expm1() -> Tensor See :func:`torch.expm1` """, ) add_docstr_all( "expm1_", r""" expm1_() -> Tensor In-place version of :meth:`~Tensor.expm1` """, ) add_docstr_all( "exponential_", r""" exponential_(lambd=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements drawn from the PDF (probability density function): .. math:: f(x) = \lambda e^{-\lambda x}, x > 0 .. note:: In probability theory, exponential distribution is supported on interval [0, :math:`\inf`) (i.e., :math:`x >= 0`) implying that zero can be sampled from the exponential distribution. However, :func:`torch.Tensor.exponential_` does not sample zero, which means that its actual support is the interval (0, :math:`\inf`). Note that :func:`torch.distributions.exponential.Exponential` is supported on the interval [0, :math:`\inf`) and can sample zero. """, ) add_docstr_all( "fill_", r""" fill_(value) -> Tensor Fills :attr:`self` tensor with the specified value. """, ) add_docstr_all( "floor", r""" floor() -> Tensor See :func:`torch.floor` """, ) add_docstr_all( "flip", r""" flip(dims) -> Tensor See :func:`torch.flip` """, ) add_docstr_all( "fliplr", r""" fliplr() -> Tensor See :func:`torch.fliplr` """, ) add_docstr_all( "flipud", r""" flipud() -> Tensor See :func:`torch.flipud` """, ) add_docstr_all( "roll", r""" roll(shifts, dims) -> Tensor See :func:`torch.roll` """, ) add_docstr_all( "floor_", r""" floor_() -> Tensor In-place version of :meth:`~Tensor.floor` """, ) add_docstr_all( "fmod", r""" fmod(divisor) -> Tensor See :func:`torch.fmod` """, ) add_docstr_all( "fmod_", r""" fmod_(divisor) -> Tensor In-place version of :meth:`~Tensor.fmod` """, ) add_docstr_all( "frac", r""" frac() -> Tensor See :func:`torch.frac` """, ) add_docstr_all( "frac_", r""" frac_() -> Tensor In-place version of :meth:`~Tensor.frac` """, ) add_docstr_all( "frexp", r""" frexp(input) -> (Tensor mantissa, Tensor exponent) See :func:`torch.frexp` """, ) add_docstr_all( "flatten", r""" flatten(start_dim=0, end_dim=-1) -> Tensor See :func:`torch.flatten` """, ) add_docstr_all( "gather", r""" gather(dim, index) -> Tensor See :func:`torch.gather` """, ) add_docstr_all( "gcd", r""" gcd(other) -> Tensor See :func:`torch.gcd` """, ) add_docstr_all( "gcd_", r""" gcd_(other) -> Tensor In-place version of :meth:`~Tensor.gcd` """, ) add_docstr_all( "ge", r""" ge(other) -> Tensor See :func:`torch.ge`. """, ) add_docstr_all( "ge_", r""" ge_(other) -> Tensor In-place version of :meth:`~Tensor.ge`. """, ) add_docstr_all( "greater_equal", r""" greater_equal(other) -> Tensor See :func:`torch.greater_equal`. """, ) add_docstr_all( "greater_equal_", r""" greater_equal_(other) -> Tensor In-place version of :meth:`~Tensor.greater_equal`. """, ) add_docstr_all( "geometric_", r""" geometric_(p, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements drawn from the geometric distribution: .. math:: P(X=k) = (1 - p)^{k - 1} p, k = 1, 2, ... .. note:: :func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`, whereas :func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success hence draws samples in :math:`\{0, 1, \ldots\}`. """, ) add_docstr_all( "geqrf", r""" geqrf() -> (Tensor, Tensor) See :func:`torch.geqrf` """, ) add_docstr_all( "ger", r""" ger(vec2) -> Tensor See :func:`torch.ger` """, ) add_docstr_all( "inner", r""" inner(other) -> Tensor See :func:`torch.inner`. """, ) add_docstr_all( "outer", r""" outer(vec2) -> Tensor See :func:`torch.outer`. """, ) add_docstr_all( "hypot", r""" hypot(other) -> Tensor See :func:`torch.hypot` """, ) add_docstr_all( "hypot_", r""" hypot_(other) -> Tensor In-place version of :meth:`~Tensor.hypot` """, ) add_docstr_all( "i0", r""" i0() -> Tensor See :func:`torch.i0` """, ) add_docstr_all( "i0_", r""" i0_() -> Tensor In-place version of :meth:`~Tensor.i0` """, ) add_docstr_all( "igamma", r""" igamma(other) -> Tensor See :func:`torch.igamma` """, ) add_docstr_all( "igamma_", r""" igamma_(other) -> Tensor In-place version of :meth:`~Tensor.igamma` """, ) add_docstr_all( "igammac", r""" igammac(other) -> Tensor See :func:`torch.igammac` """, ) add_docstr_all( "igammac_", r""" igammac_(other) -> Tensor In-place version of :meth:`~Tensor.igammac` """, ) add_docstr_all( "indices", r""" indices() -> Tensor Return the indices tensor of a :ref:`sparse COO tensor `. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. See also :meth:`Tensor.values`. .. note:: This method can only be called on a coalesced sparse tensor. See :meth:`Tensor.coalesce` for details. """, ) add_docstr_all( "get_device", r""" get_device() -> Device ordinal (Integer) For CUDA tensors, this function returns the device ordinal of the GPU on which the tensor resides. For CPU tensors, this function returns `-1`. Example:: >>> x = torch.randn(3, 4, 5, device='cuda:0') >>> x.get_device() 0 >>> x.cpu().get_device() -1 """, ) add_docstr_all( "values", r""" values() -> Tensor Return the values tensor of a :ref:`sparse COO tensor `. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. See also :meth:`Tensor.indices`. .. note:: This method can only be called on a coalesced sparse tensor. See :meth:`Tensor.coalesce` for details. """, ) add_docstr_all( "gt", r""" gt(other) -> Tensor See :func:`torch.gt`. """, ) add_docstr_all( "gt_", r""" gt_(other) -> Tensor In-place version of :meth:`~Tensor.gt`. """, ) add_docstr_all( "greater", r""" greater(other) -> Tensor See :func:`torch.greater`. """, ) add_docstr_all( "greater_", r""" greater_(other) -> Tensor In-place version of :meth:`~Tensor.greater`. """, ) add_docstr_all( "has_names", r""" Is ``True`` if any of this tensor's dimensions are named. Otherwise, is ``False``. """, ) add_docstr_all( "hardshrink", r""" hardshrink(lambd=0.5) -> Tensor See :func:`torch.nn.functional.hardshrink` """, ) add_docstr_all( "heaviside", r""" heaviside(values) -> Tensor See :func:`torch.heaviside` """, ) add_docstr_all( "heaviside_", r""" heaviside_(values) -> Tensor In-place version of :meth:`~Tensor.heaviside` """, ) add_docstr_all( "histc", r""" histc(bins=100, min=0, max=0) -> Tensor See :func:`torch.histc` """, ) add_docstr_all( "histogram", r""" histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor) See :func:`torch.histogram` """, ) add_docstr_all( "index_add_", r""" index_add_(dim, index, source, *, alpha=1) -> Tensor Accumulate the elements of :attr:`alpha` times ``source`` into the :attr:`self` tensor by adding to the indices in the order given in :attr:`index`. For example, if ``dim == 0``, ``index[i] == j``, and ``alpha=-1``, then the ``i``\ th row of ``source`` is subtracted from the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of ``source`` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. For a 3-D tensor the output is given as:: self[index[i], :, :] += alpha * src[i, :, :] # if dim == 0 self[:, index[i], :] += alpha * src[:, i, :] # if dim == 1 self[:, :, index[i]] += alpha * src[:, :, i] # if dim == 2 Note: {forward_reproducibility_note} Args: dim (int): dimension along which to index index (Tensor): indices of ``source`` to select from, should have dtype either `torch.int64` or `torch.int32` source (Tensor): the tensor containing values to add Keyword args: alpha (Number): the scalar multiplier for ``source`` Example:: >>> x = torch.ones(5, 3) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2]) >>> x.index_add_(0, index, t) tensor([[ 2., 3., 4.], [ 1., 1., 1.], [ 8., 9., 10.], [ 1., 1., 1.], [ 5., 6., 7.]]) >>> x.index_add_(0, index, t, alpha=-1) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) """.format( **reproducibility_notes ), ) add_docstr_all( "index_copy_", r""" index_copy_(dim, index, tensor) -> Tensor Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting the indices in the order given in :attr:`index`. For example, if ``dim == 0`` and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the ``j``\ th row of :attr:`self`. The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. .. note:: If :attr:`index` contains duplicate entries, multiple elements from :attr:`tensor` will be copied to the same index of :attr:`self`. The result is nondeterministic since it depends on which copy occurs last. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`tensor` to select from tensor (Tensor): the tensor containing values to copy Example:: >>> x = torch.zeros(5, 3) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2]) >>> x.index_copy_(0, index, t) tensor([[ 1., 2., 3.], [ 0., 0., 0.], [ 7., 8., 9.], [ 0., 0., 0.], [ 4., 5., 6.]]) """, ) add_docstr_all( "index_fill_", r""" index_fill_(dim, index, value) -> Tensor Fills the elements of the :attr:`self` tensor with value :attr:`value` by selecting the indices in the order given in :attr:`index`. Args: dim (int): dimension along which to index index (LongTensor): indices of :attr:`self` tensor to fill in value (float): the value to fill with Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 2]) >>> x.index_fill_(1, index, -1) tensor([[-1., 2., -1.], [-1., 5., -1.], [-1., 8., -1.]]) """, ) add_docstr_all( "index_put_", r""" index_put_(indices, values, accumulate=False) -> Tensor Puts values from the tensor :attr:`values` into the tensor :attr:`self` using the indices specified in :attr:`indices` (which is a tuple of Tensors). The expression ``tensor.index_put_(indices, values)`` is equivalent to ``tensor[indices] = values``. Returns :attr:`self`. If :attr:`accumulate` is ``True``, the elements in :attr:`values` are added to :attr:`self`. If accumulate is ``False``, the behavior is undefined if indices contain duplicate elements. Args: indices (tuple of LongTensor): tensors used to index into `self`. values (Tensor): tensor of same dtype as `self`. accumulate (bool): whether to accumulate into self """, ) add_docstr_all( "index_put", r""" index_put(indices, values, accumulate=False) -> Tensor Out-place version of :meth:`~Tensor.index_put_`. """, ) add_docstr_all( "index_reduce_", r""" index_reduce_(dim, index, source, reduce, *, include_self=True) -> Tensor Accumulate the elements of ``source`` into the :attr:`self` tensor by accumulating to the indices in the order given in :attr:`index` using the reduction given by the ``reduce`` argument. For example, if ``dim == 0``, ``index[i] == j``, ``reduce == prod`` and ``include_self == True`` then the ``i``\ th row of ``source`` is multiplied by the ``j``\ th row of :attr:`self`. If :obj:`include_self="True"`, the values in the :attr:`self` tensor are included in the reduction, otherwise, rows in the :attr:`self` tensor that are accumulated to are treated as if they were filled with the reduction identites. The :attr:`dim`\ th dimension of ``source`` must have the same size as the length of :attr:`index` (which must be a vector), and all other dimensions must match :attr:`self`, or an error will be raised. For a 3-D tensor with :obj:`reduce="prod"` and :obj:`include_self=True` the output is given as:: self[index[i], :, :] *= src[i, :, :] # if dim == 0 self[:, index[i], :] *= src[:, i, :] # if dim == 1 self[:, :, index[i]] *= src[:, :, i] # if dim == 2 Note: {forward_reproducibility_note} .. note:: This function only supports floating point tensors. .. warning:: This function is in beta and may change in the near future. Args: dim (int): dimension along which to index index (Tensor): indices of ``source`` to select from, should have dtype either `torch.int64` or `torch.int32` source (FloatTensor): the tensor containing values to accumulate reduce (str): the reduction operation to apply (:obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) Keyword args: include_self (bool): whether the elements from the ``self`` tensor are included in the reduction Example:: >>> x = torch.empty(5, 3).fill_(2) >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=torch.float) >>> index = torch.tensor([0, 4, 2, 0]) >>> x.index_reduce_(0, index, t, 'prod') tensor([[20., 44., 72.], [ 2., 2., 2.], [14., 16., 18.], [ 2., 2., 2.], [ 8., 10., 12.]]) >>> x = torch.empty(5, 3).fill_(2) >>> x.index_reduce_(0, index, t, 'prod', include_self=False) tensor([[10., 22., 36.], [ 2., 2., 2.], [ 7., 8., 9.], [ 2., 2., 2.], [ 4., 5., 6.]]) """.format( **reproducibility_notes ), ) add_docstr_all( "index_select", r""" index_select(dim, index) -> Tensor See :func:`torch.index_select` """, ) add_docstr_all( "sparse_mask", r""" sparse_mask(mask) -> Tensor Returns a new :ref:`sparse tensor ` with values from a strided tensor :attr:`self` filtered by the indices of the sparse tensor :attr:`mask`. The values of :attr:`mask` sparse tensor are ignored. :attr:`self` and :attr:`mask` tensors must have the same shape. .. note:: The returned sparse tensor might contain duplicate values if :attr:`mask` is not coalesced. It is therefore advisable to pass ``mask.coalesce()`` if such behavior is not desired. .. note:: The returned sparse tensor has the same indices as the sparse tensor :attr:`mask`, even when the corresponding values in :attr:`self` are zeros. Args: mask (Tensor): a sparse tensor whose indices are used as a filter Example:: >>> nse = 5 >>> dims = (5, 5, 2, 2) >>> I = torch.cat([torch.randint(0, dims[0], size=(nse,)), ... torch.randint(0, dims[1], size=(nse,))], 0).reshape(2, nse) >>> V = torch.randn(nse, dims[2], dims[3]) >>> S = torch.sparse_coo_tensor(I, V, dims).coalesce() >>> D = torch.randn(dims) >>> D.sparse_mask(S) tensor(indices=tensor([[0, 0, 0, 2], [0, 1, 4, 3]]), values=tensor([[[ 1.6550, 0.2397], [-0.1611, -0.0779]], [[ 0.2326, -1.0558], [ 1.4711, 1.9678]], [[-0.5138, -0.0411], [ 1.9417, 0.5158]], [[ 0.0793, 0.0036], [-0.2569, -0.1055]]]), size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo) """, ) add_docstr_all( "inverse", r""" inverse() -> Tensor See :func:`torch.inverse` """, ) add_docstr_all( "isnan", r""" isnan() -> Tensor See :func:`torch.isnan` """, ) add_docstr_all( "isinf", r""" isinf() -> Tensor See :func:`torch.isinf` """, ) add_docstr_all( "isposinf", r""" isposinf() -> Tensor See :func:`torch.isposinf` """, ) add_docstr_all( "isneginf", r""" isneginf() -> Tensor See :func:`torch.isneginf` """, ) add_docstr_all( "isfinite", r""" isfinite() -> Tensor See :func:`torch.isfinite` """, ) add_docstr_all( "isclose", r""" isclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor See :func:`torch.isclose` """, ) add_docstr_all( "isreal", r""" isreal() -> Tensor See :func:`torch.isreal` """, ) add_docstr_all( "is_coalesced", r""" is_coalesced() -> bool Returns ``True`` if :attr:`self` is a :ref:`sparse COO tensor ` that is coalesced, ``False`` otherwise. .. warning:: Throws an error if :attr:`self` is not a sparse COO tensor. See :meth:`coalesce` and :ref:`uncoalesced tensors `. """, ) add_docstr_all( "is_contiguous", r""" is_contiguous(memory_format=torch.contiguous_format) -> bool Returns True if :attr:`self` tensor is contiguous in memory in the order specified by memory format. Args: memory_format (:class:`torch.memory_format`, optional): Specifies memory allocation order. Default: ``torch.contiguous_format``. """, ) add_docstr_all( "is_pinned", r""" Returns true if this tensor resides in pinned memory. """, ) add_docstr_all( "is_floating_point", r""" is_floating_point() -> bool Returns True if the data type of :attr:`self` is a floating point data type. """, ) add_docstr_all( "is_complex", r""" is_complex() -> bool Returns True if the data type of :attr:`self` is a complex data type. """, ) add_docstr_all( "is_inference", r""" is_inference() -> bool See :func:`torch.is_inference` """, ) add_docstr_all( "is_conj", r""" is_conj() -> bool Returns True if the conjugate bit of :attr:`self` is set to true. """, ) add_docstr_all( "is_neg", r""" is_neg() -> bool Returns True if the negative bit of :attr:`self` is set to true. """, ) add_docstr_all( "is_signed", r""" is_signed() -> bool Returns True if the data type of :attr:`self` is a signed data type. """, ) add_docstr_all( "is_set_to", r""" is_set_to(tensor) -> bool Returns True if both tensors are pointing to the exact same memory (same storage, offset, size and stride). """, ) add_docstr_all( "item", r""" item() -> number Returns the value of this tensor as a standard Python number. This only works for tensors with one element. For other cases, see :meth:`~Tensor.tolist`. This operation is not differentiable. Example:: >>> x = torch.tensor([1.0]) >>> x.item() 1.0 """, ) add_docstr_all( "kron", r""" kron(other) -> Tensor See :func:`torch.kron` """, ) add_docstr_all( "kthvalue", r""" kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.kthvalue` """, ) add_docstr_all( "ldexp", r""" ldexp(other) -> Tensor See :func:`torch.ldexp` """, ) add_docstr_all( "ldexp_", r""" ldexp_(other) -> Tensor In-place version of :meth:`~Tensor.ldexp` """, ) add_docstr_all( "lcm", r""" lcm(other) -> Tensor See :func:`torch.lcm` """, ) add_docstr_all( "lcm_", r""" lcm_(other) -> Tensor In-place version of :meth:`~Tensor.lcm` """, ) add_docstr_all( "le", r""" le(other) -> Tensor See :func:`torch.le`. """, ) add_docstr_all( "le_", r""" le_(other) -> Tensor In-place version of :meth:`~Tensor.le`. """, ) add_docstr_all( "less_equal", r""" less_equal(other) -> Tensor See :func:`torch.less_equal`. """, ) add_docstr_all( "less_equal_", r""" less_equal_(other) -> Tensor In-place version of :meth:`~Tensor.less_equal`. """, ) add_docstr_all( "lerp", r""" lerp(end, weight) -> Tensor See :func:`torch.lerp` """, ) add_docstr_all( "lerp_", r""" lerp_(end, weight) -> Tensor In-place version of :meth:`~Tensor.lerp` """, ) add_docstr_all( "lgamma", r""" lgamma() -> Tensor See :func:`torch.lgamma` """, ) add_docstr_all( "lgamma_", r""" lgamma_() -> Tensor In-place version of :meth:`~Tensor.lgamma` """, ) add_docstr_all( "log", r""" log() -> Tensor See :func:`torch.log` """, ) add_docstr_all( "log_", r""" log_() -> Tensor In-place version of :meth:`~Tensor.log` """, ) add_docstr_all( "log10", r""" log10() -> Tensor See :func:`torch.log10` """, ) add_docstr_all( "log10_", r""" log10_() -> Tensor In-place version of :meth:`~Tensor.log10` """, ) add_docstr_all( "log1p", r""" log1p() -> Tensor See :func:`torch.log1p` """, ) add_docstr_all( "log1p_", r""" log1p_() -> Tensor In-place version of :meth:`~Tensor.log1p` """, ) add_docstr_all( "log2", r""" log2() -> Tensor See :func:`torch.log2` """, ) add_docstr_all( "log2_", r""" log2_() -> Tensor In-place version of :meth:`~Tensor.log2` """, ) add_docstr_all( "logaddexp", r""" logaddexp(other) -> Tensor See :func:`torch.logaddexp` """, ) add_docstr_all( "logaddexp2", r""" logaddexp2(other) -> Tensor See :func:`torch.logaddexp2` """, ) add_docstr_all( "log_normal_", r""" log_normal_(mean=1, std=2, *, generator=None) Fills :attr:`self` tensor with numbers samples from the log-normal distribution parameterized by the given mean :math:`\mu` and standard deviation :math:`\sigma`. Note that :attr:`mean` and :attr:`std` are the mean and standard deviation of the underlying normal distribution, and not of the returned distribution: .. math:: f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} """, ) add_docstr_all( "logsumexp", r""" logsumexp(dim, keepdim=False) -> Tensor See :func:`torch.logsumexp` """, ) add_docstr_all( "lt", r""" lt(other) -> Tensor See :func:`torch.lt`. """, ) add_docstr_all( "lt_", r""" lt_(other) -> Tensor In-place version of :meth:`~Tensor.lt`. """, ) add_docstr_all( "less", r""" lt(other) -> Tensor See :func:`torch.less`. """, ) add_docstr_all( "less_", r""" less_(other) -> Tensor In-place version of :meth:`~Tensor.less`. """, ) add_docstr_all( "lu_solve", r""" lu_solve(LU_data, LU_pivots) -> Tensor See :func:`torch.lu_solve` """, ) add_docstr_all( "map_", r""" map_(tensor, callable) Applies :attr:`callable` for each element in :attr:`self` tensor and the given :attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and the given :attr:`tensor` must be :ref:`broadcastable `. The :attr:`callable` should have the signature:: def callable(a, b) -> number """, ) add_docstr_all( "masked_scatter_", r""" masked_scatter_(mask, source) Copies elements from :attr:`source` into :attr:`self` tensor at positions where the :attr:`mask` is True. Elements from :attr:`source` are copied into :attr:`self` starting at position 0 of :attr:`source` and continuing in order one-by-one for each occurrence of :attr:`mask` being True. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. The :attr:`source` should have at least as many elements as the number of ones in :attr:`mask`. Args: mask (BoolTensor): the boolean mask source (Tensor): the tensor to copy from .. note:: The :attr:`mask` operates on the :attr:`self` tensor, not on the given :attr:`source` tensor. Example: >>> self = torch.tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) >>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]]) >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> self.masked_scatter_(mask, source) tensor([[0, 0, 0, 0, 1], [2, 3, 0, 4, 5]]) """, ) add_docstr_all( "masked_fill_", r""" masked_fill_(mask, value) Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is True. The shape of :attr:`mask` must be :ref:`broadcastable ` with the shape of the underlying tensor. Args: mask (BoolTensor): the boolean mask value (float): the value to fill in with """, ) add_docstr_all( "masked_select", r""" masked_select(mask) -> Tensor See :func:`torch.masked_select` """, ) add_docstr_all( "matrix_power", r""" matrix_power(n) -> Tensor .. note:: :meth:`~Tensor.matrix_power` is deprecated, use :func:`torch.linalg.matrix_power` instead. Alias for :func:`torch.linalg.matrix_power` """, ) add_docstr_all( "matrix_exp", r""" matrix_exp() -> Tensor See :func:`torch.matrix_exp` """, ) add_docstr_all( "max", r""" max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.max` """, ) add_docstr_all( "amax", r""" amax(dim=None, keepdim=False) -> Tensor See :func:`torch.amax` """, ) add_docstr_all( "maximum", r""" maximum(other) -> Tensor See :func:`torch.maximum` """, ) add_docstr_all( "fmax", r""" fmax(other) -> Tensor See :func:`torch.fmax` """, ) add_docstr_all( "argmax", r""" argmax(dim=None, keepdim=False) -> LongTensor See :func:`torch.argmax` """, ) add_docstr_all( "argwhere", r""" argwhere() -> Tensor See :func:`torch.argwhere` """, ) add_docstr_all( "mean", r""" mean(dim=None, keepdim=False, *, dtype=None) -> Tensor See :func:`torch.mean` """, ) add_docstr_all( "nanmean", r""" nanmean(dim=None, keepdim=False, *, dtype=None) -> Tensor See :func:`torch.nanmean` """, ) add_docstr_all( "median", r""" median(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.median` """, ) add_docstr_all( "nanmedian", r""" nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.nanmedian` """, ) add_docstr_all( "min", r""" min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) See :func:`torch.min` """, ) add_docstr_all( "amin", r""" amin(dim=None, keepdim=False) -> Tensor See :func:`torch.amin` """, ) add_docstr_all( "minimum", r""" minimum(other) -> Tensor See :func:`torch.minimum` """, ) add_docstr_all( "aminmax", r""" aminmax(*, dim=None, keepdim=False) -> (Tensor min, Tensor max) See :func:`torch.aminmax` """, ) add_docstr_all( "fmin", r""" fmin(other) -> Tensor See :func:`torch.fmin` """, ) add_docstr_all( "argmin", r""" argmin(dim=None, keepdim=False) -> LongTensor See :func:`torch.argmin` """, ) add_docstr_all( "mm", r""" mm(mat2) -> Tensor See :func:`torch.mm` """, ) add_docstr_all( "mode", r""" mode(dim=None, keepdim=False) -> (Tensor, LongTensor) See :func:`torch.mode` """, ) add_docstr_all( "movedim", r""" movedim(source, destination) -> Tensor See :func:`torch.movedim` """, ) add_docstr_all( "moveaxis", r""" moveaxis(source, destination) -> Tensor See :func:`torch.moveaxis` """, ) add_docstr_all( "mul", r""" mul(value) -> Tensor See :func:`torch.mul`. """, ) add_docstr_all( "mul_", r""" mul_(value) -> Tensor In-place version of :meth:`~Tensor.mul`. """, ) add_docstr_all( "multiply", r""" multiply(value) -> Tensor See :func:`torch.multiply`. """, ) add_docstr_all( "multiply_", r""" multiply_(value) -> Tensor In-place version of :meth:`~Tensor.multiply`. """, ) add_docstr_all( "multinomial", r""" multinomial(num_samples, replacement=False, *, generator=None) -> Tensor See :func:`torch.multinomial` """, ) add_docstr_all( "mv", r""" mv(vec) -> Tensor See :func:`torch.mv` """, ) add_docstr_all( "mvlgamma", r""" mvlgamma(p) -> Tensor See :func:`torch.mvlgamma` """, ) add_docstr_all( "mvlgamma_", r""" mvlgamma_(p) -> Tensor In-place version of :meth:`~Tensor.mvlgamma` """, ) add_docstr_all( "narrow", r""" narrow(dimension, start, length) -> Tensor See :func:`torch.narrow`. """, ) add_docstr_all( "narrow_copy", r""" narrow_copy(dimension, start, length) -> Tensor See :func:`torch.narrow_copy`. """, ) add_docstr_all( "ndimension", r""" ndimension() -> int Alias for :meth:`~Tensor.dim()` """, ) add_docstr_all( "nan_to_num", r""" nan_to_num(nan=0.0, posinf=None, neginf=None) -> Tensor See :func:`torch.nan_to_num`. """, ) add_docstr_all( "nan_to_num_", r""" nan_to_num_(nan=0.0, posinf=None, neginf=None) -> Tensor In-place version of :meth:`~Tensor.nan_to_num`. """, ) add_docstr_all( "ne", r""" ne(other) -> Tensor See :func:`torch.ne`. """, ) add_docstr_all( "ne_", r""" ne_(other) -> Tensor In-place version of :meth:`~Tensor.ne`. """, ) add_docstr_all( "not_equal", r""" not_equal(other) -> Tensor See :func:`torch.not_equal`. """, ) add_docstr_all( "not_equal_", r""" not_equal_(other) -> Tensor In-place version of :meth:`~Tensor.not_equal`. """, ) add_docstr_all( "neg", r""" neg() -> Tensor See :func:`torch.neg` """, ) add_docstr_all( "negative", r""" negative() -> Tensor See :func:`torch.negative` """, ) add_docstr_all( "neg_", r""" neg_() -> Tensor In-place version of :meth:`~Tensor.neg` """, ) add_docstr_all( "negative_", r""" negative_() -> Tensor In-place version of :meth:`~Tensor.negative` """, ) add_docstr_all( "nelement", r""" nelement() -> int Alias for :meth:`~Tensor.numel` """, ) add_docstr_all( "nextafter", r""" nextafter(other) -> Tensor See :func:`torch.nextafter` """, ) add_docstr_all( "nextafter_", r""" nextafter_(other) -> Tensor In-place version of :meth:`~Tensor.nextafter` """, ) add_docstr_all( "nonzero", r""" nonzero() -> LongTensor See :func:`torch.nonzero` """, ) add_docstr_all( "nonzero_static", r""" nonzero_static(input, *, size, fill_value=-1) -> Tensor Returns a 2-D tensor where each row is the index for a non-zero value. The returned Tensor has the same `torch.dtype` as `torch.nonzero()`. Args: input (Tensor): the input tensor to count non-zero elements. Keyword args: size (int): the size of non-zero elements expected to be included in the out tensor. Pad the out tensor with `fill_value` if the `size` is larger than total number of non-zero elements, truncate out tensor if `size` is smaller. The size must be a non-negative integer. fill_value (int): the value to fill the output tensor with when `size` is larger than the total number of non-zero elements. Default is `-1` to represent invalid index. Example: # Example 1: Padding >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) >>> static_size = 4 >>> t = torch.nonzero_static(input_tensor, size = static_size) tensor([[ 0, 0], [ 1, 0], [ 1, 1], [ -1, -1]], dtype=torch.int64) # Example 2: Truncating >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) >>> static_size = 2 >>> t = torch.nonzero_static(input_tensor, size = static_size) tensor([[ 0, 0], [ 1, 0]], dtype=torch.int64) # Example 3: 0 size >>> input_tensor = torch.tensor([10]) >>> static_size = 0 >>> t = torch.nonzero_static(input_tensor, size = static_size) tensor([], size=(0, 1), dtype=torch.int64) # Example 4: 0 rank input >>> input_tensor = torch.tensor(10) >>> static_size = 2 >>> t = torch.nonzero_static(input_tensor, size = static_size) tensor([], size=(2, 0), dtype=torch.int64) """, ) add_docstr_all( "norm", r""" norm(p=2, dim=None, keepdim=False) -> Tensor See :func:`torch.norm` """, ) add_docstr_all( "normal_", r""" normal_(mean=0, std=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with elements samples from the normal distribution parameterized by :attr:`mean` and :attr:`std`. """, ) add_docstr_all( "numel", r""" numel() -> int See :func:`torch.numel` """, ) add_docstr_all( "numpy", r""" numpy(*, force=False) -> numpy.ndarray Returns the tensor as a NumPy :class:`ndarray`. If :attr:`force` is ``False`` (the default), the conversion is performed only if the tensor is on the CPU, does not require grad, does not have its conjugate bit set, and is a dtype and layout that NumPy supports. The returned ndarray and the tensor will share their storage, so changes to the tensor will be reflected in the ndarray and vice versa. If :attr:`force` is ``True`` this is equivalent to calling ``t.detach().cpu().resolve_conj().resolve_neg().numpy()``. If the tensor isn't on the CPU or the conjugate or negative bit is set, the tensor won't share its storage with the returned ndarray. Setting :attr:`force` to ``True`` can be a useful shorthand. Args: force (bool): if ``True``, the ndarray may be a copy of the tensor instead of always sharing memory, defaults to ``False``. """, ) add_docstr_all( "orgqr", r""" orgqr(input2) -> Tensor See :func:`torch.orgqr` """, ) add_docstr_all( "ormqr", r""" ormqr(input2, input3, left=True, transpose=False) -> Tensor See :func:`torch.ormqr` """, ) add_docstr_all( "permute", r""" permute(*dims) -> Tensor See :func:`torch.permute` """, ) add_docstr_all( "polygamma", r""" polygamma(n) -> Tensor See :func:`torch.polygamma` """, ) add_docstr_all( "polygamma_", r""" polygamma_(n) -> Tensor In-place version of :meth:`~Tensor.polygamma` """, ) add_docstr_all( "positive", r""" positive() -> Tensor See :func:`torch.positive` """, ) add_docstr_all( "pow", r""" pow(exponent) -> Tensor See :func:`torch.pow` """, ) add_docstr_all( "pow_", r""" pow_(exponent) -> Tensor In-place version of :meth:`~Tensor.pow` """, ) add_docstr_all( "float_power", r""" float_power(exponent) -> Tensor See :func:`torch.float_power` """, ) add_docstr_all( "float_power_", r""" float_power_(exponent) -> Tensor In-place version of :meth:`~Tensor.float_power` """, ) add_docstr_all( "prod", r""" prod(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.prod` """, ) add_docstr_all( "put_", r""" put_(index, source, accumulate=False) -> Tensor Copies the elements from :attr:`source` into the positions specified by :attr:`index`. For the purpose of indexing, the :attr:`self` tensor is treated as if it were a 1-D tensor. :attr:`index` and :attr:`source` need to have the same number of elements, but not necessarily the same shape. If :attr:`accumulate` is ``True``, the elements in :attr:`source` are added to :attr:`self`. If accumulate is ``False``, the behavior is undefined if :attr:`index` contain duplicate elements. Args: index (LongTensor): the indices into self source (Tensor): the tensor containing values to copy from accumulate (bool): whether to accumulate into self Example:: >>> src = torch.tensor([[4, 3, 5], ... [6, 7, 8]]) >>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10])) tensor([[ 4, 9, 5], [ 10, 7, 8]]) """, ) add_docstr_all( "put", r""" put(input, index, source, accumulate=False) -> Tensor Out-of-place version of :meth:`torch.Tensor.put_`. `input` corresponds to `self` in :meth:`torch.Tensor.put_`. """, ) add_docstr_all( "qr", r""" qr(some=True) -> (Tensor, Tensor) See :func:`torch.qr` """, ) add_docstr_all( "qscheme", r""" qscheme() -> torch.qscheme Returns the quantization scheme of a given QTensor. """, ) add_docstr_all( "quantile", r""" quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See :func:`torch.quantile` """, ) add_docstr_all( "nanquantile", r""" nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See :func:`torch.nanquantile` """, ) add_docstr_all( "q_scale", r""" q_scale() -> float Given a Tensor quantized by linear(affine) quantization, returns the scale of the underlying quantizer(). """, ) add_docstr_all( "q_zero_point", r""" q_zero_point() -> int Given a Tensor quantized by linear(affine) quantization, returns the zero_point of the underlying quantizer(). """, ) add_docstr_all( "q_per_channel_scales", r""" q_per_channel_scales() -> Tensor Given a Tensor quantized by linear (affine) per-channel quantization, returns a Tensor of scales of the underlying quantizer. It has the number of elements that matches the corresponding dimensions (from q_per_channel_axis) of the tensor. """, ) add_docstr_all( "q_per_channel_zero_points", r""" q_per_channel_zero_points() -> Tensor Given a Tensor quantized by linear (affine) per-channel quantization, returns a tensor of zero_points of the underlying quantizer. It has the number of elements that matches the corresponding dimensions (from q_per_channel_axis) of the tensor. """, ) add_docstr_all( "q_per_channel_axis", r""" q_per_channel_axis() -> int Given a Tensor quantized by linear (affine) per-channel quantization, returns the index of dimension on which per-channel quantization is applied. """, ) add_docstr_all( "random_", r""" random_(from=0, to=None, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the discrete uniform distribution over ``[from, to - 1]``. If not specified, the values are usually only bounded by :attr:`self` tensor's data type. However, for floating point types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` will be uniform in ``[0, 2^53]``. """, ) add_docstr_all( "rad2deg", r""" rad2deg() -> Tensor See :func:`torch.rad2deg` """, ) add_docstr_all( "rad2deg_", r""" rad2deg_() -> Tensor In-place version of :meth:`~Tensor.rad2deg` """, ) add_docstr_all( "deg2rad", r""" deg2rad() -> Tensor See :func:`torch.deg2rad` """, ) add_docstr_all( "deg2rad_", r""" deg2rad_() -> Tensor In-place version of :meth:`~Tensor.deg2rad` """, ) add_docstr_all( "ravel", r""" ravel() -> Tensor see :func:`torch.ravel` """, ) add_docstr_all( "reciprocal", r""" reciprocal() -> Tensor See :func:`torch.reciprocal` """, ) add_docstr_all( "reciprocal_", r""" reciprocal_() -> Tensor In-place version of :meth:`~Tensor.reciprocal` """, ) add_docstr_all( "record_stream", r""" record_stream(stream) Marks the tensor as having been used by this stream. When the tensor is deallocated, ensure the tensor memory is not reused for another tensor until all work queued on :attr:`stream` at the time of deallocation is complete. .. note:: The caching allocator is aware of only the stream where a tensor was allocated. Due to the awareness, it already correctly manages the life cycle of tensors on only one stream. But if a tensor is used on a stream different from the stream of origin, the allocator might reuse the memory unexpectedly. Calling this method lets the allocator know which streams have used the tensor. .. warning:: This method is most suitable for use cases where you are providing a function that created a tensor on a side stream, and want users to be able to make use of the tensor without having to think carefully about stream safety when making use of them. These safety guarantees come at some performance and predictability cost (analogous to the tradeoff between GC and manual memory management), so if you are in a situation where you manage the full lifetime of your tensors, you may consider instead manually managing CUDA events so that calling this method is not necessary. In particular, when you call this method, on later allocations the allocator will poll the recorded stream to see if all operations have completed yet; you can potentially race with side stream computation and non-deterministically reuse or fail to reuse memory for an allocation. You can safely use tensors allocated on side streams without :meth:`~Tensor.record_stream`; you must manually ensure that any non-creation stream uses of a tensor are synced back to the creation stream before you deallocate the tensor. As the CUDA caching allocator guarantees that the memory will only be reused with the same creation stream, this is sufficient to ensure that writes to future reallocations of the memory will be delayed until non-creation stream uses are done. (Counterintuitively, you may observe that on the CPU side we have already reallocated the tensor, even though CUDA kernels on the old tensor are still in progress. This is fine, because CUDA operations on the new tensor will appropriately wait for the old operations to complete, as they are all on the same stream.) Concretely, this looks like this:: with torch.cuda.stream(s0): x = torch.zeros(N) s1.wait_stream(s0) with torch.cuda.stream(s1): y = some_comm_op(x) ... some compute on s0 ... # synchronize creation stream s0 to side stream s1 # before deallocating x s0.wait_stream(s1) del x Note that some discretion is required when deciding when to perform ``s0.wait_stream(s1)``. In particular, if we were to wait immediately after ``some_comm_op``, there wouldn't be any point in having the side stream; it would be equivalent to have run ``some_comm_op`` on ``s0``. Instead, the synchronization must be placed at some appropriate, later point in time where you expect the side stream ``s1`` to have finished work. This location is typically identified via profiling, e.g., using Chrome traces produced :meth:`torch.autograd.profiler.profile.export_chrome_trace`. If you place the wait too early, work on s0 will block until ``s1`` has finished, preventing further overlapping of communication and computation. If you place the wait too late, you will use more memory than is strictly necessary (as you are keeping ``x`` live for longer.) For a concrete example of how this guidance can be applied in practice, see this post: `FSDP and CUDACachingAllocator `_. """, ) add_docstr_all( "remainder", r""" remainder(divisor) -> Tensor See :func:`torch.remainder` """, ) add_docstr_all( "remainder_", r""" remainder_(divisor) -> Tensor In-place version of :meth:`~Tensor.remainder` """, ) add_docstr_all( "renorm", r""" renorm(p, dim, maxnorm) -> Tensor See :func:`torch.renorm` """, ) add_docstr_all( "renorm_", r""" renorm_(p, dim, maxnorm) -> Tensor In-place version of :meth:`~Tensor.renorm` """, ) add_docstr_all( "repeat", r""" repeat(*sizes) -> Tensor Repeats this tensor along the specified dimensions. Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. .. warning:: :meth:`~Tensor.repeat` behaves differently from `numpy.repeat `_, but is more similar to `numpy.tile `_. For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`. Args: sizes (torch.Size or int...): The number of times to repeat this tensor along each dimension Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat(4, 2) tensor([[ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3], [ 1, 2, 3, 1, 2, 3]]) >>> x.repeat(4, 2, 1).size() torch.Size([4, 2, 3]) """, ) add_docstr_all( "repeat_interleave", r""" repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor See :func:`torch.repeat_interleave`. """, ) add_docstr_all( "requires_grad_", r""" requires_grad_(requires_grad=True) -> Tensor Change if autograd should record operations on this tensor: sets this tensor's :attr:`requires_grad` attribute in-place. Returns this tensor. :func:`requires_grad_`'s main use case is to tell autograd to begin recording operations on a Tensor ``tensor``. If ``tensor`` has ``requires_grad=False`` (because it was obtained through a DataLoader, or required preprocessing or initialization), ``tensor.requires_grad_()`` makes it so that autograd will begin to record operations on ``tensor``. Args: requires_grad (bool): If autograd should record operations on this tensor. Default: ``True``. Example:: >>> # Let's say we want to preprocess some saved weights and use >>> # the result as new weights. >>> saved_weights = [0.1, 0.2, 0.3, 0.25] >>> loaded_weights = torch.tensor(saved_weights) >>> weights = preprocess(loaded_weights) # some function >>> weights tensor([-0.5503, 0.4926, -2.1158, -0.8303]) >>> # Now, start to record operations done to weights >>> weights.requires_grad_() >>> out = weights.pow(2).sum() >>> out.backward() >>> weights.grad tensor([-1.1007, 0.9853, -4.2316, -1.6606]) """, ) add_docstr_all( "reshape", r""" reshape(*shape) -> Tensor Returns a tensor with the same data and number of elements as :attr:`self` but with the specified shape. This method returns a view if :attr:`shape` is compatible with the current shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. See :func:`torch.reshape` Args: shape (tuple of ints or int...): the desired shape """, ) add_docstr_all( "reshape_as", r""" reshape_as(other) -> Tensor Returns this tensor as the same shape as :attr:`other`. ``self.reshape_as(other)`` is equivalent to ``self.reshape(other.sizes())``. This method returns a view if ``other.sizes()`` is compatible with the current shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. Please see :meth:`reshape` for more information about ``reshape``. Args: other (:class:`torch.Tensor`): The result tensor has the same shape as :attr:`other`. """, ) add_docstr_all( "resize_", r""" resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor Resizes :attr:`self` tensor to the specified size. If the number of elements is larger than the current storage size, then the underlying storage is resized to fit the new number of elements. If the number of elements is smaller, the underlying storage is not changed. Existing elements are preserved but any new memory is uninitialized. .. warning:: This is a low-level method. The storage is reinterpreted as C-contiguous, ignoring the current strides (unless the target size equals the current size, in which case the tensor is left unchanged). For most purposes, you will instead want to use :meth:`~Tensor.view()`, which checks for contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To change the size in-place with custom strides, see :meth:`~Tensor.set_()`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, new elements are initialized to prevent nondeterministic behavior from using the result as an input to an operation. Floating point and complex values are set to NaN, and integer values are set to the maximum value. Args: sizes (torch.Size or int...): the desired size memory_format (:class:`torch.memory_format`, optional): the desired memory format of Tensor. Default: ``torch.contiguous_format``. Note that memory format of :attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``. Example:: >>> x = torch.tensor([[1, 2], [3, 4], [5, 6]]) >>> x.resize_(2, 2) tensor([[ 1, 2], [ 3, 4]]) """, ) add_docstr_all( "resize_as_", r""" resize_as_(tensor, memory_format=torch.contiguous_format) -> Tensor Resizes the :attr:`self` tensor to be the same size as the specified :attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``. Args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of Tensor. Default: ``torch.contiguous_format``. Note that memory format of :attr:`self` is going to be unaffected if ``self.size()`` matches ``tensor.size()``. """, ) add_docstr_all( "rot90", r""" rot90(k, dims) -> Tensor See :func:`torch.rot90` """, ) add_docstr_all( "round", r""" round(decimals=0) -> Tensor See :func:`torch.round` """, ) add_docstr_all( "round_", r""" round_(decimals=0) -> Tensor In-place version of :meth:`~Tensor.round` """, ) add_docstr_all( "rsqrt", r""" rsqrt() -> Tensor See :func:`torch.rsqrt` """, ) add_docstr_all( "rsqrt_", r""" rsqrt_() -> Tensor In-place version of :meth:`~Tensor.rsqrt` """, ) add_docstr_all( "scatter_", r""" scatter_(dim, index, src, *, reduce=None) -> Tensor Writes all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in :meth:`~Tensor.gather`. :attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have the same number of dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``index`` and ``src`` do not broadcast. Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be between ``0`` and ``self.size(dim) - 1`` inclusive. .. warning:: When indices are not unique, the behavior is non-deterministic (one of the values from ``src`` will be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)! .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Additionally accepts an optional :attr:`reduce` argument that allows specification of an optional reduction operation, which is applied to all values in the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index`. For each value in :attr:`src`, the reduction operation is applied to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` is updated as:: self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 Reducing with the addition operation is the same as using :meth:`~torch.Tensor.scatter_add_`. .. warning:: The reduce argument with Tensor ``src`` is deprecated and will be removed in a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` instead for more reduction options. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source element(s) to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]]) .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: :noindex: Writes the value from :attr:`value` into :attr:`self` at the indices specified in the :attr:`index` tensor. This operation is equivalent to the previous version, with the :attr:`src` tensor filled entirely with :attr:`value`. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. value (Scalar): the value to scatter. Keyword args: reduce (str, optional): reduction operation to apply, can be either ``'add'`` or ``'multiply'``. Example:: >>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]]) """, ) add_docstr_all( "scatter_add_", r""" scatter_add_(dim, index, src) -> Tensor Adds all values from the tensor :attr:`src` into :attr:`self` at the indices specified in the :attr:`index` tensor in a similar fashion as :meth:`~torch.Tensor.scatter_`. For each value in :attr:`src`, it is added to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. For a 3-D tensor, :attr:`self` is updated as:: self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 :attr:`self`, :attr:`index` and :attr:`src` should have same number of dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``index`` and ``src`` do not broadcast. Note: {forward_reproducibility_note} .. note:: The backward pass is implemented only for ``src.shape == index.shape``. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter and add, can be either empty or of the same dimensionality as ``src``. When empty, the operation returns ``self`` unchanged. src (Tensor): the source elements to scatter and add Example:: >>> src = torch.ones((2, 5)) >>> index = torch.tensor([[0, 1, 2, 0, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) tensor([[1., 0., 0., 1., 1.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.]]) >>> index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 2, 2, 2]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) tensor([[2., 0., 0., 1., 1.], [0., 2., 0., 0., 0.], [0., 0., 2., 1., 1.]]) """.format( **reproducibility_notes ), ) add_docstr_all( "scatter_reduce_", r""" scatter_reduce_(dim, index, src, reduce, *, include_self=True) -> Tensor Reduces all values from the :attr:`src` tensor to the indices specified in the :attr:`index` tensor in the :attr:`self` tensor using the applied reduction defined via the :attr:`reduce` argument (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`). For each value in :attr:`src`, it is reduced to an index in :attr:`self` which is specified by its index in :attr:`src` for ``dimension != dim`` and by the corresponding value in :attr:`index` for ``dimension = dim``. If :obj:`include_self="True"`, the values in the :attr:`self` tensor are included in the reduction. :attr:`self`, :attr:`index` and :attr:`src` should all have the same number of dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. Note that ``index`` and ``src`` do not broadcast. For a 3-D tensor with :obj:`reduce="sum"` and :obj:`include_self=True` the output is given as:: self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 Note: {forward_reproducibility_note} .. note:: The backward pass is implemented only for ``src.shape == index.shape``. .. warning:: This function is in beta and may change in the near future. Args: dim (int): the axis along which to index index (LongTensor): the indices of elements to scatter and reduce. src (Tensor): the source elements to scatter and reduce reduce (str): the reduction operation to apply for non-unique indices (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) include_self (bool): whether elements from the :attr:`self` tensor are included in the reduction Example:: >>> src = torch.tensor([1., 2., 3., 4., 5., 6.]) >>> index = torch.tensor([0, 1, 0, 1, 2, 1]) >>> input = torch.tensor([1., 2., 3., 4.]) >>> input.scatter_reduce(0, index, src, reduce="sum") tensor([5., 14., 8., 4.]) >>> input.scatter_reduce(0, index, src, reduce="sum", include_self=False) tensor([4., 12., 5., 4.]) >>> input2 = torch.tensor([5., 4., 3., 2.]) >>> input2.scatter_reduce(0, index, src, reduce="amax") tensor([5., 6., 5., 2.]) >>> input2.scatter_reduce(0, index, src, reduce="amax", include_self=False) tensor([3., 6., 5., 2.]) """.format( **reproducibility_notes ), ) add_docstr_all( "select", r""" select(dim, index) -> Tensor See :func:`torch.select` """, ) add_docstr_all( "select_scatter", r""" select_scatter(src, dim, index) -> Tensor See :func:`torch.select_scatter` """, ) add_docstr_all( "slice_scatter", r""" slice_scatter(src, dim=0, start=None, end=None, step=1) -> Tensor See :func:`torch.slice_scatter` """, ) add_docstr_all( "set_", r""" set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, :attr:`self` tensor will share the same storage and have the same size and strides as :attr:`source`. Changes to elements in one tensor will be reflected in the other. If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying storage, offset, size, and stride. Args: source (Tensor or Storage): the tensor or storage to use storage_offset (int, optional): the offset in the storage size (torch.Size, optional): the desired size. Defaults to the size of the source. stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. """, ) add_docstr_all( "sigmoid", r""" sigmoid() -> Tensor See :func:`torch.sigmoid` """, ) add_docstr_all( "sigmoid_", r""" sigmoid_() -> Tensor In-place version of :meth:`~Tensor.sigmoid` """, ) add_docstr_all( "logit", r""" logit() -> Tensor See :func:`torch.logit` """, ) add_docstr_all( "logit_", r""" logit_() -> Tensor In-place version of :meth:`~Tensor.logit` """, ) add_docstr_all( "sign", r""" sign() -> Tensor See :func:`torch.sign` """, ) add_docstr_all( "sign_", r""" sign_() -> Tensor In-place version of :meth:`~Tensor.sign` """, ) add_docstr_all( "signbit", r""" signbit() -> Tensor See :func:`torch.signbit` """, ) add_docstr_all( "sgn", r""" sgn() -> Tensor See :func:`torch.sgn` """, ) add_docstr_all( "sgn_", r""" sgn_() -> Tensor In-place version of :meth:`~Tensor.sgn` """, ) add_docstr_all( "sin", r""" sin() -> Tensor See :func:`torch.sin` """, ) add_docstr_all( "sin_", r""" sin_() -> Tensor In-place version of :meth:`~Tensor.sin` """, ) add_docstr_all( "sinc", r""" sinc() -> Tensor See :func:`torch.sinc` """, ) add_docstr_all( "sinc_", r""" sinc_() -> Tensor In-place version of :meth:`~Tensor.sinc` """, ) add_docstr_all( "sinh", r""" sinh() -> Tensor See :func:`torch.sinh` """, ) add_docstr_all( "sinh_", r""" sinh_() -> Tensor In-place version of :meth:`~Tensor.sinh` """, ) add_docstr_all( "size", r""" size(dim=None) -> torch.Size or int Returns the size of the :attr:`self` tensor. If ``dim`` is not specified, the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`. If ``dim`` is specified, returns an int holding the size of that dimension. Args: dim (int, optional): The dimension for which to retrieve the size. Example:: >>> t = torch.empty(3, 4, 5) >>> t.size() torch.Size([3, 4, 5]) >>> t.size(dim=1) 4 """, ) add_docstr_all( "shape", r""" shape() -> torch.Size Returns the size of the :attr:`self` tensor. Alias for :attr:`size`. See also :meth:`Tensor.size`. Example:: >>> t = torch.empty(3, 4, 5) >>> t.size() torch.Size([3, 4, 5]) >>> t.shape torch.Size([3, 4, 5]) """, ) add_docstr_all( "sort", r""" sort(dim=-1, descending=False) -> (Tensor, LongTensor) See :func:`torch.sort` """, ) add_docstr_all( "msort", r""" msort() -> Tensor See :func:`torch.msort` """, ) add_docstr_all( "argsort", r""" argsort(dim=-1, descending=False) -> LongTensor See :func:`torch.argsort` """, ) add_docstr_all( "sparse_dim", r""" sparse_dim() -> int Return the number of sparse dimensions in a :ref:`sparse tensor ` :attr:`self`. .. note:: Returns ``0`` if :attr:`self` is not a sparse tensor. See also :meth:`Tensor.dense_dim` and :ref:`hybrid tensors `. """, ) add_docstr_all( "sparse_resize_", r""" sparse_resize_(size, sparse_dim, dense_dim) -> Tensor Resizes :attr:`self` :ref:`sparse tensor ` to the desired size and the number of sparse and dense dimensions. .. note:: If the number of specified elements in :attr:`self` is zero, then :attr:`size`, :attr:`sparse_dim`, and :attr:`dense_dim` can be any size and positive integers such that ``len(size) == sparse_dim + dense_dim``. If :attr:`self` specifies one or more elements, however, then each dimension in :attr:`size` must not be smaller than the corresponding dimension of :attr:`self`, :attr:`sparse_dim` must equal the number of sparse dimensions in :attr:`self`, and :attr:`dense_dim` must equal the number of dense dimensions in :attr:`self`. .. warning:: Throws an error if :attr:`self` is not a sparse tensor. Args: size (torch.Size): the desired size. If :attr:`self` is non-empty sparse tensor, the desired size cannot be smaller than the original size. sparse_dim (int): the number of sparse dimensions dense_dim (int): the number of dense dimensions """, ) add_docstr_all( "sparse_resize_and_clear_", r""" sparse_resize_and_clear_(size, sparse_dim, dense_dim) -> Tensor Removes all specified elements from a :ref:`sparse tensor ` :attr:`self` and resizes :attr:`self` to the desired size and the number of sparse and dense dimensions. .. warning: Throws an error if :attr:`self` is not a sparse tensor. Args: size (torch.Size): the desired size. sparse_dim (int): the number of sparse dimensions dense_dim (int): the number of dense dimensions """, ) add_docstr_all( "sqrt", r""" sqrt() -> Tensor See :func:`torch.sqrt` """, ) add_docstr_all( "sqrt_", r""" sqrt_() -> Tensor In-place version of :meth:`~Tensor.sqrt` """, ) add_docstr_all( "square", r""" square() -> Tensor See :func:`torch.square` """, ) add_docstr_all( "square_", r""" square_() -> Tensor In-place version of :meth:`~Tensor.square` """, ) add_docstr_all( "squeeze", r""" squeeze(dim=None) -> Tensor See :func:`torch.squeeze` """, ) add_docstr_all( "squeeze_", r""" squeeze_(dim=None) -> Tensor In-place version of :meth:`~Tensor.squeeze` """, ) add_docstr_all( "std", r""" std(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.std` """, ) add_docstr_all( "storage_offset", r""" storage_offset() -> int Returns :attr:`self` tensor's offset in the underlying storage in terms of number of storage elements (not bytes). Example:: >>> x = torch.tensor([1, 2, 3, 4, 5]) >>> x.storage_offset() 0 >>> x[3:].storage_offset() 3 """, ) add_docstr_all( "untyped_storage", r""" untyped_storage() -> torch.UntypedStorage Returns the underlying :class:`UntypedStorage`. """, ) add_docstr_all( "stride", r""" stride(dim) -> tuple or int Returns the stride of :attr:`self` tensor. Stride is the jump necessary to go from one element to the next one in the specified dimension :attr:`dim`. A tuple of all strides is returned when no argument is passed in. Otherwise, an integer value is returned as the stride in the particular dimension :attr:`dim`. Args: dim (int, optional): the desired dimension in which stride is required Example:: >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) >>> x.stride() (5, 1) >>> x.stride(0) 5 >>> x.stride(-1) 1 """, ) add_docstr_all( "sub", r""" sub(other, *, alpha=1) -> Tensor See :func:`torch.sub`. """, ) add_docstr_all( "sub_", r""" sub_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.sub` """, ) add_docstr_all( "subtract", r""" subtract(other, *, alpha=1) -> Tensor See :func:`torch.subtract`. """, ) add_docstr_all( "subtract_", r""" subtract_(other, *, alpha=1) -> Tensor In-place version of :meth:`~Tensor.subtract`. """, ) add_docstr_all( "sum", r""" sum(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.sum` """, ) add_docstr_all( "nansum", r""" nansum(dim=None, keepdim=False, dtype=None) -> Tensor See :func:`torch.nansum` """, ) add_docstr_all( "svd", r""" svd(some=True, compute_uv=True) -> (Tensor, Tensor, Tensor) See :func:`torch.svd` """, ) add_docstr_all( "swapdims", r""" swapdims(dim0, dim1) -> Tensor See :func:`torch.swapdims` """, ) add_docstr_all( "swapdims_", r""" swapdims_(dim0, dim1) -> Tensor In-place version of :meth:`~Tensor.swapdims` """, ) add_docstr_all( "swapaxes", r""" swapaxes(axis0, axis1) -> Tensor See :func:`torch.swapaxes` """, ) add_docstr_all( "swapaxes_", r""" swapaxes_(axis0, axis1) -> Tensor In-place version of :meth:`~Tensor.swapaxes` """, ) add_docstr_all( "t", r""" t() -> Tensor See :func:`torch.t` """, ) add_docstr_all( "t_", r""" t_() -> Tensor In-place version of :meth:`~Tensor.t` """, ) add_docstr_all( "tile", r""" tile(dims) -> Tensor See :func:`torch.tile` """, ) add_docstr_all( "to", r""" to(*args, **kwargs) -> Tensor Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are inferred from the arguments of ``self.to(*args, **kwargs)``. .. note:: If the ``self`` Tensor already has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. Otherwise, the returned tensor is a copy of ``self`` with the desired :class:`torch.dtype` and :class:`torch.device`. Here are the ways to call ``to``: .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`dtype` Args: {memory_format} .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor :noindex: Returns a Tensor with the specified :attr:`device` and (optional) :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. When :attr:`non_blocking`, tries to convert asynchronously with respect to the host if possible, e.g., converting a CPU Tensor with pinned memory to a CUDA Tensor. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Args: {memory_format} .. method:: to(other, non_blocking=False, copy=False) -> Tensor :noindex: Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert asynchronously with respect to the host if possible, e.g., converting a CPU Tensor with pinned memory to a CUDA Tensor. When :attr:`copy` is set, a new Tensor is created even when the Tensor already matches the desired conversion. Example:: >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu >>> tensor.to(torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64) >>> cuda0 = torch.device('cuda:0') >>> tensor.to(cuda0) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], device='cuda:0') >>> tensor.to(cuda0, dtype=torch.float64) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') >>> other = torch.randn((), dtype=torch.float64, device=cuda0) >>> tensor.to(other, non_blocking=True) tensor([[-0.5044, 0.0005], [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') """.format( **common_args ), ) add_docstr_all( "byte", r""" byte(memory_format=torch.preserve_format) -> Tensor ``self.byte()`` is equivalent to ``self.to(torch.uint8)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "bool", r""" bool(memory_format=torch.preserve_format) -> Tensor ``self.bool()`` is equivalent to ``self.to(torch.bool)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "char", r""" char(memory_format=torch.preserve_format) -> Tensor ``self.char()`` is equivalent to ``self.to(torch.int8)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "bfloat16", r""" bfloat16(memory_format=torch.preserve_format) -> Tensor ``self.bfloat16()`` is equivalent to ``self.to(torch.bfloat16)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "double", r""" double(memory_format=torch.preserve_format) -> Tensor ``self.double()`` is equivalent to ``self.to(torch.float64)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "float", r""" float(memory_format=torch.preserve_format) -> Tensor ``self.float()`` is equivalent to ``self.to(torch.float32)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "cdouble", r""" cdouble(memory_format=torch.preserve_format) -> Tensor ``self.cdouble()`` is equivalent to ``self.to(torch.complex128)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "cfloat", r""" cfloat(memory_format=torch.preserve_format) -> Tensor ``self.cfloat()`` is equivalent to ``self.to(torch.complex64)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "chalf", r""" chalf(memory_format=torch.preserve_format) -> Tensor ``self.chalf()`` is equivalent to ``self.to(torch.complex32)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "half", r""" half(memory_format=torch.preserve_format) -> Tensor ``self.half()`` is equivalent to ``self.to(torch.float16)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "int", r""" int(memory_format=torch.preserve_format) -> Tensor ``self.int()`` is equivalent to ``self.to(torch.int32)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "int_repr", r""" int_repr() -> Tensor Given a quantized Tensor, ``self.int_repr()`` returns a CPU Tensor with uint8_t as data type that stores the underlying uint8_t values of the given Tensor. """, ) add_docstr_all( "long", r""" long(memory_format=torch.preserve_format) -> Tensor ``self.long()`` is equivalent to ``self.to(torch.int64)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "short", r""" short(memory_format=torch.preserve_format) -> Tensor ``self.short()`` is equivalent to ``self.to(torch.int16)``. See :func:`to`. Args: {memory_format} """.format( **common_args ), ) add_docstr_all( "take", r""" take(indices) -> Tensor See :func:`torch.take` """, ) add_docstr_all( "take_along_dim", r""" take_along_dim(indices, dim) -> Tensor See :func:`torch.take_along_dim` """, ) add_docstr_all( "tan", r""" tan() -> Tensor See :func:`torch.tan` """, ) add_docstr_all( "tan_", r""" tan_() -> Tensor In-place version of :meth:`~Tensor.tan` """, ) add_docstr_all( "tanh", r""" tanh() -> Tensor See :func:`torch.tanh` """, ) add_docstr_all( "softmax", r""" softmax(dim) -> Tensor Alias for :func:`torch.nn.functional.softmax`. """, ) add_docstr_all( "tanh_", r""" tanh_() -> Tensor In-place version of :meth:`~Tensor.tanh` """, ) add_docstr_all( "tolist", r""" tolist() -> list or number Returns the tensor as a (nested) list. For scalars, a standard Python number is returned, just like with :meth:`~Tensor.item`. Tensors are automatically moved to the CPU first if necessary. This operation is not differentiable. Examples:: >>> a = torch.randn(2, 2) >>> a.tolist() [[0.012766935862600803, 0.5415473580360413], [-0.08909505605697632, 0.7729271650314331]] >>> a[0,0].tolist() 0.012766935862600803 """, ) add_docstr_all( "topk", r""" topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) See :func:`torch.topk` """, ) add_docstr_all( "to_dense", r""" to_dense(dtype=None, *, masked_grad=True) -> Tensor Creates a strided copy of :attr:`self` if :attr:`self` is not a strided tensor, otherwise returns :attr:`self`. Keyword args: {dtype} masked_grad (bool, optional): If set to ``True`` (default) and :attr:`self` has a sparse layout then the backward of :meth:`to_dense` returns ``grad.sparse_mask(self)``. Example:: >>> s = torch.sparse_coo_tensor( ... torch.tensor([[1, 1], ... [0, 2]]), ... torch.tensor([9, 10]), ... size=(3, 3)) >>> s.to_dense() tensor([[ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]]) """, ) add_docstr_all( "to_sparse", r""" to_sparse(sparseDims) -> Tensor Returns a sparse copy of the tensor. PyTorch supports sparse tensors in :ref:`coordinate format `. Args: sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor Example:: >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]]) >>> d tensor([[ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]]) >>> d.to_sparse() tensor(indices=tensor([[1, 1], [0, 2]]), values=tensor([ 9, 10]), size=(3, 3), nnz=2, layout=torch.sparse_coo) >>> d.to_sparse(1) tensor(indices=tensor([[1]]), values=tensor([[ 9, 0, 10]]), size=(3, 3), nnz=1, layout=torch.sparse_coo) .. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor :noindex: Returns a sparse tensor with the specified layout and blocksize. If the :attr:`self` is strided, the number of dense dimensions could be specified, and a hybrid sparse tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. .. note:: If the :attr:`self` layout and blocksize parameters match with the specified layout and blocksize, return :attr:`self`. Otherwise, return a sparse tensor copy of :attr:`self`. Args: layout (:class:`torch.layout`, optional): The desired sparse layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``, ``torch.sparse_csc``, ``torch.sparse_bsr``, or ``torch.sparse_bsc``. Default: if ``None``, ``torch.sparse_coo``. blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSR or BSC tensor. For other layouts, specifying the block size that is not ``None`` will result in a RuntimeError exception. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting CSR, CSC, BSR or BSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> x = torch.tensor([[1, 0], [0, 0], [2, 3]]) >>> x.to_sparse(layout=torch.sparse_coo) tensor(indices=tensor([[0, 2, 2], [0, 0, 1]]), values=tensor([1, 2, 3]), size=(3, 2), nnz=3, layout=torch.sparse_coo) >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2)) tensor(crow_indices=tensor([0, 1, 1, 2]), col_indices=tensor([0, 0]), values=tensor([[[1, 0]], [[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr) >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1)) RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2 >>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1)) RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize >>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]]) >>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1) tensor(crow_indices=tensor([0, 1, 1, 3]), col_indices=tensor([0, 0, 1]), values=tensor([[1], [2], [3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr) """, ) add_docstr_all( "to_sparse_csr", r""" to_sparse_csr(dense_dim=None) -> Tensor Convert a tensor to compressed row storage format (CSR). Except for strided tensors, only works with 2D tensors. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid CSR tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: dense_dim (int, optional): Number of dense dimensions of the resulting CSR tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csr() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csr(dense_dim=2) tensor(crow_indices=tensor([0, 1, 2, 3]), col_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csr) """, ) add_docstr_all( "to_sparse_csc", r""" to_sparse_csc() -> Tensor Convert a tensor to compressed column storage (CSC) format. Except for strided tensors, only works with 2D tensors. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid CSC tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: dense_dim (int, optional): Number of dense dimensions of the resulting CSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csc() >>> sparse._nnz() 25 >>> dense = torch.zeros(3, 3, 1, 1) >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 >>> dense.to_sparse_csc(dense_dim=2) tensor(ccol_indices=tensor([0, 1, 2, 3]), row_indices=tensor([0, 2, 1]), values=tensor([[[1.]], [[1.]], [[1.]]]), size=(3, 3, 1, 1), nnz=3, layout=torch.sparse_csc) """, ) add_docstr_all( "to_sparse_bsr", r""" to_sparse_bsr(blocksize, dense_dim) -> Tensor Convert a tensor to a block sparse row (BSR) storage format of given blocksize. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid BSR tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSR tensor. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting BSR tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(10, 10) >>> sparse = dense.to_sparse_csr() >>> sparse_bsr = sparse.to_sparse_bsr((5, 5)) >>> sparse_bsr.col_indices() tensor([0, 1, 0, 1]) >>> dense = torch.zeros(4, 3, 1) >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 >>> dense.to_sparse_bsr((2, 1), 1) tensor(crow_indices=tensor([0, 2, 3]), col_indices=tensor([0, 2, 1]), values=tensor([[[[1.]], [[1.]]], [[[1.]], [[1.]]], [[[1.]], [[1.]]]]), size=(4, 3, 1), nnz=3, layout=torch.sparse_bsr) """, ) add_docstr_all( "to_sparse_bsc", r""" to_sparse_bsc(blocksize, dense_dim) -> Tensor Convert a tensor to a block sparse column (BSC) storage format of given blocksize. If the :attr:`self` is strided, then the number of dense dimensions could be specified, and a hybrid BSC tensor will be created, with `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch dimension. Args: blocksize (list, tuple, :class:`torch.Size`, optional): Block size of the resulting BSC tensor. A block size must be a tuple of length two such that its items evenly divide the two sparse dimensions. dense_dim (int, optional): Number of dense dimensions of the resulting BSC tensor. This argument should be used only if :attr:`self` is a strided tensor, and must be a value between 0 and dimension of :attr:`self` tensor minus two. Example:: >>> dense = torch.randn(10, 10) >>> sparse = dense.to_sparse_csr() >>> sparse_bsc = sparse.to_sparse_bsc((5, 5)) >>> sparse_bsc.row_indices() tensor([0, 1, 0, 1]) >>> dense = torch.zeros(4, 3, 1) >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 >>> dense.to_sparse_bsc((2, 1), 1) tensor(ccol_indices=tensor([0, 1, 2, 3]), row_indices=tensor([0, 1, 0]), values=tensor([[[[1.]], [[1.]]], [[[1.]], [[1.]]], [[[1.]], [[1.]]]]), size=(4, 3, 1), nnz=3, layout=torch.sparse_bsc) """, ) add_docstr_all( "to_mkldnn", r""" to_mkldnn() -> Tensor Returns a copy of the tensor in ``torch.mkldnn`` layout. """, ) add_docstr_all( "trace", r""" trace() -> Tensor See :func:`torch.trace` """, ) add_docstr_all( "transpose", r""" transpose(dim0, dim1) -> Tensor See :func:`torch.transpose` """, ) add_docstr_all( "transpose_", r""" transpose_(dim0, dim1) -> Tensor In-place version of :meth:`~Tensor.transpose` """, ) add_docstr_all( "triangular_solve", r""" triangular_solve(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) See :func:`torch.triangular_solve` """, ) add_docstr_all( "tril", r""" tril(diagonal=0) -> Tensor See :func:`torch.tril` """, ) add_docstr_all( "tril_", r""" tril_(diagonal=0) -> Tensor In-place version of :meth:`~Tensor.tril` """, ) add_docstr_all( "triu", r""" triu(diagonal=0) -> Tensor See :func:`torch.triu` """, ) add_docstr_all( "triu_", r""" triu_(diagonal=0) -> Tensor In-place version of :meth:`~Tensor.triu` """, ) add_docstr_all( "true_divide", r""" true_divide(value) -> Tensor See :func:`torch.true_divide` """, ) add_docstr_all( "true_divide_", r""" true_divide_(value) -> Tensor In-place version of :meth:`~Tensor.true_divide_` """, ) add_docstr_all( "trunc", r""" trunc() -> Tensor See :func:`torch.trunc` """, ) add_docstr_all( "fix", r""" fix() -> Tensor See :func:`torch.fix`. """, ) add_docstr_all( "trunc_", r""" trunc_() -> Tensor In-place version of :meth:`~Tensor.trunc` """, ) add_docstr_all( "fix_", r""" fix_() -> Tensor In-place version of :meth:`~Tensor.fix` """, ) add_docstr_all( "type", r""" type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor Returns the type if `dtype` is not provided, else casts this object to the specified type. If this is already of the correct type, no copy is performed and the original object is returned. Args: dtype (dtype or string): The desired type non_blocking (bool): If ``True``, and the source is in pinned memory and destination is on the GPU or vice versa, the copy is performed asynchronously with respect to the host. Otherwise, the argument has no effect. **kwargs: For compatibility, may contain the key ``async`` in place of the ``non_blocking`` argument. The ``async`` arg is deprecated. """, ) add_docstr_all( "type_as", r""" type_as(tensor) -> Tensor Returns this tensor cast to the type of the given tensor. This is a no-op if the tensor is already of the correct type. This is equivalent to ``self.type(tensor.type())`` Args: tensor (Tensor): the tensor which has the desired type """, ) add_docstr_all( "unfold", r""" unfold(dimension, size, step) -> Tensor Returns a view of the original tensor which contains all slices of size :attr:`size` from :attr:`self` tensor in the dimension :attr:`dimension`. Step between two slices is given by :attr:`step`. If `sizedim` is the size of dimension :attr:`dimension` for :attr:`self`, the size of dimension :attr:`dimension` in the returned tensor will be `(sizedim - size) / step + 1`. An additional dimension of size :attr:`size` is appended in the returned tensor. Args: dimension (int): dimension in which unfolding happens size (int): the size of each slice that is unfolded step (int): the step between each slice Example:: >>> x = torch.arange(1., 8) >>> x tensor([ 1., 2., 3., 4., 5., 6., 7.]) >>> x.unfold(0, 2, 1) tensor([[ 1., 2.], [ 2., 3.], [ 3., 4.], [ 4., 5.], [ 5., 6.], [ 6., 7.]]) >>> x.unfold(0, 2, 2) tensor([[ 1., 2.], [ 3., 4.], [ 5., 6.]]) """, ) add_docstr_all( "uniform_", r""" uniform_(from=0, to=1, *, generator=None) -> Tensor Fills :attr:`self` tensor with numbers sampled from the continuous uniform distribution: .. math:: f(x) = \dfrac{1}{\text{to} - \text{from}} """, ) add_docstr_all( "unsqueeze", r""" unsqueeze(dim) -> Tensor See :func:`torch.unsqueeze` """, ) add_docstr_all( "unsqueeze_", r""" unsqueeze_(dim) -> Tensor In-place version of :meth:`~Tensor.unsqueeze` """, ) add_docstr_all( "var", r""" var(dim=None, *, correction=1, keepdim=False) -> Tensor See :func:`torch.var` """, ) add_docstr_all( "vdot", r""" vdot(other) -> Tensor See :func:`torch.vdot` """, ) add_docstr_all( "view", r""" view(*shape) -> Tensor Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`shape`. The returned tensor shares the same data and must have the same number of elements, but may have a different size. For a tensor to be viewed, the new view size must be compatible with its original size and stride, i.e., each new view dimension must either be a subspace of an original dimension, or only span across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, .. math:: \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which returns a view if the shapes are compatible, and copies (equivalent to calling :meth:`contiguous`) otherwise. Args: shape (torch.Size or int...): the desired size Example:: >>> x = torch.randn(4, 4) >>> x.size() torch.Size([4, 4]) >>> y = x.view(16) >>> y.size() torch.Size([16]) >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions >>> z.size() torch.Size([2, 8]) >>> a = torch.randn(1, 2, 3, 4) >>> a.size() torch.Size([1, 2, 3, 4]) >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension >>> b.size() torch.Size([1, 3, 2, 4]) >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory >>> c.size() torch.Size([1, 3, 2, 4]) >>> torch.equal(b, c) False .. method:: view(dtype) -> Tensor :noindex: Returns a new tensor with the same data as the :attr:`self` tensor but of a different :attr:`dtype`. If the element size of :attr:`dtype` is different than that of ``self.dtype``, then the size of the last dimension of the output will be scaled proportionally. For instance, if :attr:`dtype` element size is twice that of ``self.dtype``, then each pair of elements in the last dimension of :attr:`self` will be combined, and the size of the last dimension of the output will be half that of :attr:`self`. If :attr:`dtype` element size is half that of ``self.dtype``, then each element in the last dimension of :attr:`self` will be split in two, and the size of the last dimension of the output will be double that of :attr:`self`. For this to be possible, the following conditions must be true: * ``self.dim()`` must be greater than 0. * ``self.stride(-1)`` must be 1. Additionally, if the element size of :attr:`dtype` is greater than that of ``self.dtype``, the following conditions must be true as well: * ``self.size(-1)`` must be divisible by the ratio between the element sizes of the dtypes. * ``self.storage_offset()`` must be divisible by the ratio between the element sizes of the dtypes. * The strides of all dimensions, except the last dimension, must be divisible by the ratio between the element sizes of the dtypes. If any of the above conditions are not met, an error is thrown. .. warning:: This overload is not supported by TorchScript, and using it in a Torchscript program will cause undefined behavior. Args: dtype (:class:`torch.dtype`): the desired dtype Example:: >>> x = torch.randn(4, 4) >>> x tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.dtype torch.float32 >>> y = x.view(torch.int32) >>> y tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], [-1105482831, 1061112040, 1057999968, -1084397505], [-1071760287, -1123489973, -1097310419, -1084649136], [-1101533110, 1073668768, -1082790149, -1088634448]], dtype=torch.int32) >>> y[0, 0] = 1000000000 >>> x tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], [-0.1520, 0.7472, 0.5617, -0.8649], [-2.4724, -0.0334, -0.2976, -0.8499], [-0.2109, 1.9913, -0.9607, -0.6123]]) >>> x.view(torch.cfloat) tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], [-0.1520+0.7472j, 0.5617-0.8649j], [-2.4724-0.0334j, -0.2976-0.8499j], [-0.2109+1.9913j, -0.9607-0.6123j]]) >>> x.view(torch.cfloat).size() torch.Size([4, 2]) >>> x.view(torch.uint8) tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, 8, 191], [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, 93, 191], [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, 89, 191], [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, 28, 191]], dtype=torch.uint8) >>> x.view(torch.uint8).size() torch.Size([4, 16]) """, ) add_docstr_all( "view_as", r""" view_as(other) -> Tensor View this tensor as the same size as :attr:`other`. ``self.view_as(other)`` is equivalent to ``self.view(other.size())``. Please see :meth:`~Tensor.view` for more information about ``view``. Args: other (:class:`torch.Tensor`): The result tensor has the same size as :attr:`other`. """, ) add_docstr_all( "expand", r""" expand(*sizes) -> Tensor Returns a new view of the :attr:`self` tensor with singleton dimensions expanded to a larger size. Passing -1 as the size for a dimension means not changing the size of that dimension. Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front. For the new dimensions, the size cannot be set to -1. Expanding a tensor does not allocate new memory, but only creates a new view on the existing tensor where a dimension of size one is expanded to a larger size by setting the ``stride`` to 0. Any dimension of size 1 can be expanded to an arbitrary value without allocating new memory. Args: *sizes (torch.Size or int...): the desired expanded size .. warning:: More than one element of an expanded tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first. Example:: >>> x = torch.tensor([[1], [2], [3]]) >>> x.size() torch.Size([3, 1]) >>> x.expand(3, 4) tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) >>> x.expand(-1, 4) # -1 means not changing the size of that dimension tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) """, ) add_docstr_all( "expand_as", r""" expand_as(other) -> Tensor Expand this tensor to the same size as :attr:`other`. ``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``. Please see :meth:`~Tensor.expand` for more information about ``expand``. Args: other (:class:`torch.Tensor`): The result tensor has the same size as :attr:`other`. """, ) add_docstr_all( "sum_to_size", r""" sum_to_size(*size) -> Tensor Sum ``this`` tensor to :attr:`size`. :attr:`size` must be broadcastable to ``this`` tensor size. Args: size (int...): a sequence of integers defining the shape of the output tensor. """, ) add_docstr_all( "zero_", r""" zero_() -> Tensor Fills :attr:`self` tensor with zeros. """, ) add_docstr_all( "matmul", r""" matmul(tensor2) -> Tensor See :func:`torch.matmul` """, ) add_docstr_all( "chunk", r""" chunk(chunks, dim=0) -> List of Tensors See :func:`torch.chunk` """, ) add_docstr_all( "unsafe_chunk", r""" unsafe_chunk(chunks, dim=0) -> List of Tensors See :func:`torch.unsafe_chunk` """, ) add_docstr_all( "unsafe_split", r""" unsafe_split(split_size, dim=0) -> List of Tensors See :func:`torch.unsafe_split` """, ) add_docstr_all( "tensor_split", r""" tensor_split(indices_or_sections, dim=0) -> List of Tensors See :func:`torch.tensor_split` """, ) add_docstr_all( "hsplit", r""" hsplit(split_size_or_sections) -> List of Tensors See :func:`torch.hsplit` """, ) add_docstr_all( "vsplit", r""" vsplit(split_size_or_sections) -> List of Tensors See :func:`torch.vsplit` """, ) add_docstr_all( "dsplit", r""" dsplit(split_size_or_sections) -> List of Tensors See :func:`torch.dsplit` """, ) add_docstr_all( "stft", r""" stft(frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) -> Tensor See :func:`torch.stft` """, ) add_docstr_all( "istft", r""" istft(n_fft, hop_length=None, win_length=None, window=None, center=True, normalized=False, onesided=True, length=None) -> Tensor See :func:`torch.istft` """, ) add_docstr_all( "det", r""" det() -> Tensor See :func:`torch.det` """, ) add_docstr_all( "where", r""" where(condition, y) -> Tensor ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. See :func:`torch.where` """, ) add_docstr_all( "logdet", r""" logdet() -> Tensor See :func:`torch.logdet` """, ) add_docstr_all( "slogdet", r""" slogdet() -> (Tensor, Tensor) See :func:`torch.slogdet` """, ) add_docstr_all( "unbind", r""" unbind(dim=0) -> seq See :func:`torch.unbind` """, ) add_docstr_all( "pin_memory", r""" pin_memory() -> Tensor Copies the tensor to pinned memory, if it's not already pinned. """, ) add_docstr_all( "pinverse", r""" pinverse() -> Tensor See :func:`torch.pinverse` """, ) add_docstr_all( "index_add", r""" index_add(dim, index, source, *, alpha=1) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_add_`. """, ) add_docstr_all( "index_copy", r""" index_copy(dim, index, tensor2) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_copy_`. """, ) add_docstr_all( "index_fill", r""" index_fill(dim, index, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.index_fill_`. """, ) add_docstr_all( "scatter", r""" scatter(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """, ) add_docstr_all( "scatter_add", r""" scatter_add(dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_add_` """, ) add_docstr_all( "scatter_reduce", r""" scatter_reduce(dim, index, src, reduce, *, include_self=True) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` """, ) add_docstr_all( "masked_scatter", r""" masked_scatter(mask, tensor) -> Tensor Out-of-place version of :meth:`torch.Tensor.masked_scatter_` .. note:: The inputs :attr:`self` and :attr:`mask` :ref:`broadcast `. Example: >>> self = torch.tensor([0, 0, 0, 0, 0]) >>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]]) >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> self.masked_scatter(mask, source) tensor([[0, 0, 0, 0, 1], [2, 3, 0, 4, 5]]) """, ) add_docstr_all( "xlogy", r""" xlogy(other) -> Tensor See :func:`torch.xlogy` """, ) add_docstr_all( "xlogy_", r""" xlogy_(other) -> Tensor In-place version of :meth:`~Tensor.xlogy` """, ) add_docstr_all( "masked_fill", r""" masked_fill(mask, value) -> Tensor Out-of-place version of :meth:`torch.Tensor.masked_fill_` """, ) add_docstr_all( "grad", r""" This attribute is ``None`` by default and becomes a Tensor the first time a call to :func:`backward` computes gradients for ``self``. The attribute will then contain the gradients computed and future calls to :func:`backward` will accumulate (add) gradients into it. """, ) add_docstr_all( "retain_grad", r""" retain_grad() -> None Enables this Tensor to have their :attr:`grad` populated during :func:`backward`. This is a no-op for leaf tensors. """, ) add_docstr_all( "retains_grad", r""" Is ``True`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be populated during :func:`backward`, ``False`` otherwise. """, ) add_docstr_all( "requires_grad", r""" Is ``True`` if gradients need to be computed for this Tensor, ``False`` otherwise. .. note:: The fact that gradients need to be computed for a Tensor do not mean that the :attr:`grad` attribute will be populated, see :attr:`is_leaf` for more details. """, ) add_docstr_all( "is_leaf", r""" All Tensors that have :attr:`requires_grad` which is ``False`` will be leaf Tensors by convention. For Tensors that have :attr:`requires_grad` which is ``True``, they will be leaf Tensors if they were created by the user. This means that they are not the result of an operation and so :attr:`grad_fn` is None. Only leaf Tensors will have their :attr:`grad` populated during a call to :func:`backward`. To get :attr:`grad` populated for non-leaf Tensors, you can use :func:`retain_grad`. Example:: >>> a = torch.rand(10, requires_grad=True) >>> a.is_leaf True >>> b = torch.rand(10, requires_grad=True).cuda() >>> b.is_leaf False # b was created by the operation that cast a cpu Tensor into a cuda Tensor >>> c = torch.rand(10, requires_grad=True) + 2 >>> c.is_leaf False # c was created by the addition operation >>> d = torch.rand(10).cuda() >>> d.is_leaf True # d does not require gradients and so has no operation creating it (that is tracked by the autograd engine) >>> e = torch.rand(10).cuda().requires_grad_() >>> e.is_leaf True # e requires gradients and has no operations creating it >>> f = torch.rand(10, requires_grad=True, device="cuda") >>> f.is_leaf True # f requires grad, has no operation creating it """, ) add_docstr_all( "names", r""" Stores names for each of this tensor's dimensions. ``names[idx]`` corresponds to the name of tensor dimension ``idx``. Names are either a string if the dimension is named or ``None`` if the dimension is unnamed. Dimension names may contain characters or underscore. Furthermore, a dimension name must be a valid Python variable name (i.e., does not start with underscore). Tensors may not have two named dimensions with the same name. .. warning:: The named tensor API is experimental and subject to change. """, ) add_docstr_all( "is_cuda", r""" Is ``True`` if the Tensor is stored on the GPU, ``False`` otherwise. """, ) add_docstr_all( "is_cpu", r""" Is ``True`` if the Tensor is stored on the CPU, ``False`` otherwise. """, ) add_docstr_all( "is_xla", r""" Is ``True`` if the Tensor is stored on an XLA device, ``False`` otherwise. """, ) add_docstr_all( "is_ipu", r""" Is ``True`` if the Tensor is stored on the IPU, ``False`` otherwise. """, ) add_docstr_all( "is_xpu", r""" Is ``True`` if the Tensor is stored on the XPU, ``False`` otherwise. """, ) add_docstr_all( "is_quantized", r""" Is ``True`` if the Tensor is quantized, ``False`` otherwise. """, ) add_docstr_all( "is_meta", r""" Is ``True`` if the Tensor is a meta tensor, ``False`` otherwise. Meta tensors are like normal tensors, but they carry no data. """, ) add_docstr_all( "is_mps", r""" Is ``True`` if the Tensor is stored on the MPS device, ``False`` otherwise. """, ) add_docstr_all( "is_sparse", r""" Is ``True`` if the Tensor uses sparse COO storage layout, ``False`` otherwise. """, ) add_docstr_all( "is_sparse_csr", r""" Is ``True`` if the Tensor uses sparse CSR storage layout, ``False`` otherwise. """, ) add_docstr_all( "device", r""" Is the :class:`torch.device` where this Tensor is. """, ) add_docstr_all( "ndim", r""" Alias for :meth:`~Tensor.dim()` """, ) add_docstr_all( "itemsize", r""" Alias for :meth:`~Tensor.element_size()` """, ) add_docstr_all( "nbytes", r""" Returns the number of bytes consumed by the "view" of elements of the Tensor if the Tensor does not use sparse storage layout. Defined to be :meth:`~Tensor.numel()` * :meth:`~Tensor.element_size()` """, ) add_docstr_all( "T", r""" Returns a view of this tensor with its dimensions reversed. If ``n`` is the number of dimensions in ``x``, ``x.T`` is equivalent to ``x.permute(n-1, n-2, ..., 0)``. .. warning:: The use of :func:`Tensor.T` on tensors of dimension other than 2 to reverse their shape is deprecated and it will throw an error in a future release. Consider :attr:`~.Tensor.mT` to transpose batches of matrices or `x.permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse the dimensions of a tensor. """, ) add_docstr_all( "H", r""" Returns a view of a matrix (2-D tensor) conjugated and transposed. ``x.H`` is equivalent to ``x.transpose(0, 1).conj()`` for complex matrices and ``x.transpose(0, 1)`` for real matrices. .. seealso:: :attr:`~.Tensor.mH`: An attribute that also works on batches of matrices. """, ) add_docstr_all( "mT", r""" Returns a view of this tensor with the last two dimensions transposed. ``x.mT`` is equivalent to ``x.transpose(-2, -1)``. """, ) add_docstr_all( "mH", r""" Accessing this property is equivalent to calling :func:`adjoint`. """, ) add_docstr_all( "adjoint", r""" adjoint() -> Tensor Alias for :func:`adjoint` """, ) add_docstr_all( "real", r""" Returns a new tensor containing real values of the :attr:`self` tensor for a complex-valued input tensor. The returned tensor and :attr:`self` share the same underlying storage. Returns :attr:`self` if :attr:`self` is a real-valued tensor tensor. Example:: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.real tensor([ 0.3100, -0.5445, -1.6492, -0.0638]) """, ) add_docstr_all( "imag", r""" Returns a new tensor containing imaginary values of the :attr:`self` tensor. The returned tensor and :attr:`self` share the same underlying storage. .. warning:: :func:`imag` is only supported for tensors with complex dtypes. Example:: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.imag tensor([ 0.3553, -0.7896, -0.0633, -0.8119]) """, ) add_docstr_all( "as_subclass", r""" as_subclass(cls) -> Tensor Makes a ``cls`` instance with the same data pointer as ``self``. Changes in the output mirror changes in ``self``, and the output stays attached to the autograd graph. ``cls`` must be a subclass of ``Tensor``. """, ) add_docstr_all( "crow_indices", r""" crow_indices() -> IntTensor Returns the tensor containing the compressed row indices of the :attr:`self` tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. The ``crow_indices`` tensor is strictly of shape (:attr:`self`.size(0) + 1) and of type ``int32`` or ``int64``. When using MKL routines such as sparse matrix multiplication, it is necessary to use ``int32`` indexing in order to avoid downcasting and potentially losing information. Example:: >>> csr = torch.eye(5,5).to_sparse_csr() >>> csr.crow_indices() tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32) """, ) add_docstr_all( "col_indices", r""" col_indices() -> IntTensor Returns the tensor containing the column indices of the :attr:`self` tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. The ``col_indices`` tensor is strictly of shape (:attr:`self`.nnz()) and of type ``int32`` or ``int64``. When using MKL routines such as sparse matrix multiplication, it is necessary to use ``int32`` indexing in order to avoid downcasting and potentially losing information. Example:: >>> csr = torch.eye(5,5).to_sparse_csr() >>> csr.col_indices() tensor([0, 1, 2, 3, 4], dtype=torch.int32) """, ) add_docstr_all( "to_padded_tensor", r""" to_padded_tensor(padding, output_size=None) -> Tensor See :func:`to_padded_tensor` """, )