#pragma once #include #include #include #include #include #include #if USE_GLOBAL_CUB_WRAPPED_NAMESPACE() #include #else // include cub in a safe manner, see: // https://github.com/pytorch/pytorch/pull/55292 #undef CUB_NS_POSTFIX //undef to avoid redefinition warnings #undef CUB_NS_PREFIX #undef CUB_NS_QUALIFIER #define CUB_NS_PREFIX namespace at_cuda_detail { #define CUB_NS_POSTFIX } #define CUB_NS_QUALIFIER ::at_cuda_detail::cub #include #undef CUB_NS_POSTFIX #undef CUB_NS_PREFIX #undef CUB_NS_QUALIFIER #endif #include #include #include // handle the temporary storage and 'twice' calls for cub API #define CUB_WRAPPER(func, ...) do { \ size_t temp_storage_bytes = 0; \ func(nullptr, temp_storage_bytes, __VA_ARGS__); \ auto& caching_allocator = *::c10::cuda::CUDACachingAllocator::get(); \ auto temp_storage = caching_allocator.allocate(temp_storage_bytes); \ func(temp_storage.get(), temp_storage_bytes, __VA_ARGS__); \ AT_CUDA_CHECK(cudaGetLastError()); \ } while (false) #ifdef USE_ROCM #define NO_ROCM(x) #define ROCM_HIPCUB(x) ::hipcub #else #define NO_ROCM(x) x #define ROCM_HIPCUB(x) x #endif #if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || \ (defined(USE_ROCM) && ROCM_VERSION >= 40500) #if !defined(USE_ROCM) namespace at_cuda_detail { #endif // backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16 template <> struct ROCM_HIPCUB(cub)::FpLimits { static __host__ __device__ __forceinline__ c10::BFloat16 Max() { unsigned short max_word = 0x7F7F; return reinterpret_cast(max_word); } static __host__ __device__ __forceinline__ c10::BFloat16 Lowest() { unsigned short lowest_word = 0xFF7F; return reinterpret_cast(lowest_word); } }; template <> struct ROCM_HIPCUB(cub)::NumericTraits: ROCM_HIPCUB(cub)::BaseTraits {}; #if !defined(USE_ROCM) } // namespace at_cuda_detail #endif #endif #if !defined(USE_ROCM) namespace at::native { namespace cub = ::at_cuda_detail::cub; } // namespace at::native #endif namespace at::cuda::cub { namespace detail { template struct cuda_type { using type = T; }; template<> struct cuda_type { using type = __half; }; #if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16() template<> struct cuda_type { using type = __nv_bfloat16; }; #elif (defined(USE_ROCM) && ROCM_VERSION >= 40500) template<> struct cuda_type { using type = hip_bfloat16; }; #endif } // namespace detail template inline void segmented_sort_pairs( const key_t *keys_in, key_t *keys_out, const value_t *values_in, value_t *values_out, int64_t num_elements, int64_t num_segments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending=false, int64_t begin_bit=0, int64_t end_bit=sizeof(key_t)*8 ) { TORCH_CHECK(num_elements <= std::numeric_limits::max(), "cub sort does not support sorting more than INT_MAX elements"); TORCH_CHECK(num_segments <= std::numeric_limits::max(), "cub sort does not support sorting more than INT_MAX elements"); using key_t_ = typename detail::cuda_type::type; auto allocator = c10::cuda::CUDACachingAllocator::get(); c10::DataPtr keys_out_owner; if (keys_out == nullptr) { keys_out_owner = allocator->allocate(num_elements * sizeof(key_t)); keys_out = reinterpret_cast(keys_out_owner.get()); } const key_t_ *keys_in_ = reinterpret_cast(keys_in); key_t_ *keys_out_ = reinterpret_cast(keys_out); if (descending) { CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairsDescending, keys_in_, keys_out_, values_in, values_out, num_elements, num_segments, begin_offsets, end_offsets, begin_bit, end_bit, c10::cuda::getCurrentCUDAStream()); } else { CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairs, keys_in_, keys_out_, values_in, values_out, num_elements, num_segments, begin_offsets, end_offsets, begin_bit, end_bit, c10::cuda::getCurrentCUDAStream()); } } #if CUB_SUPPORTS_UNIQUE_BY_KEY() template inline void unique_by_key( KeysInputIteratorT keys_in, ValuesInputIteratorT values_in, KeysOutputIteratorT keys_out, ValuesOutputIteratorT values_out, NumSelectedIteratorT num_selected, int64_t num_input_items) { // TODO: use thrust::discard_iterator to handle null keys_out when https://github.com/NVIDIA/cub/issues/406 is fixed. constexpr bool null_keys_out = std::is_same::value; using KeyT = typename std::iterator_traits::value_type; using RealKeysOutputIteratorT = typename std::conditional::type; RealKeysOutputIteratorT keys_out_; auto allocator = c10::cuda::CUDACachingAllocator::get(); c10::DataPtr keys_out_owner; if constexpr (null_keys_out) { keys_out_owner = allocator->allocate(num_input_items * sizeof(KeyT)); keys_out_ = static_cast(keys_out_owner.get()); } else { keys_out_ = keys_out; } CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey, keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream()); } #endif namespace impl { template C10_LAUNCH_BOUNDS_1(1) __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputIteratorT out, ScanOpT scan_op){ // NOTE: out here not the final scan output, but an intermediate of the accumulation type. using acc_t = typename std::iterator_traits::value_type; *out = scan_op(static_cast(*a), static_cast(*b)); } #if !CUB_SUPPORTS_FUTURE_VALUE() template struct chained_iterator { using iterator_category = std::random_access_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = ValueT; using pointer = ValueT*; using reference = ValueT&; InputIteratorT iter; ValueT *first; difference_type offset = 0; __device__ ValueT operator[](difference_type i) { i += offset; if (i == 0) { return *first; } else { return ValueT(iter[i - 1]); } } __device__ chained_iterator operator+(difference_type i) { return chained_iterator{iter, first, i}; } __device__ ValueT operator*() { return (*this)[0]; } }; #endif // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, // so split at int_max/2 constexpr int max_cub_size = std::numeric_limits::max() / 2 + 1; // 2**30 } // non synchronizing cub call // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, // so split at int_max/2 template inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, int64_t num_items) { #if defined(USE_ROCM) && (ROCM_VERSION >= 50000) //For ROCm, use hipCUB chained iterators CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::InclusiveScan, input, output, scan_op, num_items, at::cuda::getCurrentCUDAStream()); C10_HIP_KERNEL_LAUNCH_CHECK(); #else // non synchronizing cub call // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, // so split at int_max/2 int size_cub = std::min(num_items, max_cub_size); CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, input, output, scan_op, size_cub, at::cuda::getCurrentCUDAStream()); C10_CUDA_KERNEL_LAUNCH_CHECK(); using input_t = typename std::iterator_traits::value_type; for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) { auto allocator = c10::cuda::CUDACachingAllocator::get(); c10::DataPtr first_elem = allocator->allocate(sizeof(input_t)); auto first_elem_ptr = reinterpret_cast(first_elem.get()); size_cub = std::min(num_items - i, max_cub_size); impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>( output + i - 1, input + i, first_elem_ptr, scan_op); C10_CUDA_KERNEL_LAUNCH_CHECK(); #if !CUB_SUPPORTS_FUTURE_VALUE() using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator; using tuple = typename ArgIndexInputIterator::value_type; auto input_iter_transform = [=] __device__ (const tuple &x)->input_t { if (x.key == 0) { return *first_elem_ptr; } else { return x.value; } }; auto input_ = NO_ROCM(at_cuda_detail)::cub::TransformInputIterator( ArgIndexInputIterator(input + i), input_iter_transform); CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, input_, output + i, scan_op, size_cub, at::cuda::getCurrentCUDAStream()); #else CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, input + i + 1, output + i, scan_op, ::at_cuda_detail::cub::FutureValue(first_elem_ptr), size_cub, at::cuda::getCurrentCUDAStream()); #endif } #endif } template inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, InitValueT init_value, int64_t num_items) { #if defined(USE_ROCM) && (ROCM_VERSION >= 50000) //For ROCm, use hipCUB chained iterators CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::ExclusiveScan, input, output, scan_op, init_value, num_items, at::cuda::getCurrentCUDAStream()); C10_HIP_KERNEL_LAUNCH_CHECK(); #else // non synchronizing cub call // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, // so split at int_max/2 int size_cub = std::min(num_items, max_cub_size); CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, input, output, scan_op, init_value, size_cub, at::cuda::getCurrentCUDAStream()); C10_CUDA_KERNEL_LAUNCH_CHECK(); for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) { auto allocator = c10::cuda::CUDACachingAllocator::get(); c10::DataPtr first_elem = allocator->allocate(sizeof(InitValueT)); auto first_elem_ptr = reinterpret_cast(first_elem.get()); size_cub = std::min(num_items - i, max_cub_size); impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>( output + i - 1, input + i - 1, first_elem_ptr, scan_op); C10_CUDA_KERNEL_LAUNCH_CHECK(); #if !CUB_SUPPORTS_FUTURE_VALUE() auto input_ = impl::chained_iterator{ input + i, first_elem_ptr}; CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, input_, output + i, scan_op, size_cub, at::cuda::getCurrentCUDAStream()); #else CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, input + i, output + i, scan_op, ::at_cuda_detail::cub::FutureValue(first_elem_ptr), size_cub, at::cuda::getCurrentCUDAStream()); #endif } #endif } #if CUB_SUPPORTS_SCAN_BY_KEY() template inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) { TORCH_CHECK(num_items <= std::numeric_limits::max(), "cub InclusiveSumByKey does not support more than INT_MAX elements"); CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveSumByKey, keys, input, output, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream()); } template inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, ScanOpT scan_op, int64_t num_items) { TORCH_CHECK(num_items <= std::numeric_limits::max(), "cub InclusiveSumByKey does not support more than INT_MAX elements"); CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveScanByKey, keys, input, output, scan_op, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream()); } #endif template void unique(InputIteratorT input, OutputIteratorT output, NumSelectedIteratorT num_selected_out, int64_t num_items) { TORCH_CHECK(num_items <= std::numeric_limits::max(), "cub unique does not support more than INT_MAX elements"); CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::Unique, input, output, num_selected_out, num_items, at::cuda::getCurrentCUDAStream()); } template void run_length_encode(InputIteratorT input, OutputIteratorT output, CountsOutputIteratorT counts_out, LengthOutputIteratorT length_out, int64_t num_items) { TORCH_CHECK(num_items <= std::numeric_limits::max(), "cub run_length_encode does not support more than INT_MAX elements"); CUB_WRAPPER( NO_ROCM(at_cuda_detail)::cub::DeviceRunLengthEncode::Encode, input, output, counts_out, length_out, num_items, at::cuda::getCurrentCUDAStream()); } template void reduce(InputIteratorT input, OutputIteratorT output, int64_t num_items, ReductionOpT op, T init) { TORCH_CHECK(num_items <= std::numeric_limits::max(), "cub reduce does not support more than INT_MAX elements"); CUB_WRAPPER( NO_ROCM(at_cuda_detail)::cub::DeviceReduce::Reduce, input, output, num_items, op, init, at::cuda::getCurrentCUDAStream()); } } // namespace at::cuda::cub