#pragma once #include #include #ifndef AT_PER_OPERATOR_HEADERS #include #else #include #include #include #endif // WARNING: this header contains non-inline functions and should be only // included from ONE cpp file namespace at::native { // View tensor with new dtype, storage offset, sizes and strides inline Tensor view_tensor( const Tensor &tensor, ScalarType dtype, c10::SymInt offset, SymIntArrayRef sizes, SymIntArrayRef strides) { Storage storage = tensor.storage(); auto key_set = tensor.key_set().remove(DispatchKey::Conjugate); auto new_tensor = detail::make_tensor( c10::TensorImpl::VIEW, std::move(storage), key_set, scalarTypeToTypeMeta(dtype)); auto * impl = new_tensor.unsafeGetTensorImpl(); impl->set_sizes_and_strides(sizes, strides, offset); return new_tensor; } inline SymDimVector computeStrideForViewAsReal(SymIntArrayRef oldstride) { SymDimVector res(oldstride.size() + 1); for (const auto i : c10::irange(oldstride.size())) { res[i] = oldstride[i] * 2; } res.back() = 1; return res; } inline Tensor _view_as_real_physical(const Tensor& self) { TORCH_CHECK(self.is_complex(), "view_as_real is only supported for complex tensors"); auto old_sizes = self.sym_sizes(); SymDimVector new_sizes(old_sizes.size() + 1); std::copy(old_sizes.begin(), old_sizes.end(), new_sizes.begin()); // last dimension will always have two elements containing the real and imag vals new_sizes.back() = 2; auto new_strides = computeStrideForViewAsReal(self.sym_strides()); auto new_storage_offset = self.sym_storage_offset() * 2; const auto float_type = c10::toRealValueType(self.scalar_type()); auto real_tensor = view_tensor(self, float_type, std::move(new_storage_offset), new_sizes, new_strides); return real_tensor; } // expects as input a complex tensor and returns back a tensor // with corresponding real dtype containing the complex values // in the last two dimensions Tensor view_as_real(const Tensor& self) { TORCH_CHECK(!self.is_conj(), "view_as_real doesn't work on unresolved conjugated tensors. To resolve the conjugate tensor so you can view it as real, use self.resolve_conj(); however, be warned that the resulting tensor will NOT alias the original."); return _view_as_real_physical(self); } inline SymDimVector computeStrideForViewAsComplex(SymIntArrayRef oldstride) { const int64_t dim = oldstride.size(); TORCH_CHECK(oldstride[dim-1] == 1, "Tensor must have a last dimension with stride 1"); SymDimVector res(dim - 1); for (const auto i : c10::irange(res.size())) { TORCH_CHECK(oldstride[i] % 2 == 0, "Tensor must have a stride divisible by 2 for all but last dimension"); res[i] = oldstride[i] / 2; } return res; } // expects as input a float or double tensor with last dimension of size 2 // and returns back a tensor with corresponding complex dtype Tensor view_as_complex(const Tensor& self) { TORCH_CHECK( self.scalar_type() == kFloat || self.scalar_type() == kDouble || self.scalar_type() == kHalf, "view_as_complex is only supported for half, float and double tensors, but got a tensor of scalar type: ", self.scalar_type()); auto old_sizes = self.sym_sizes(); TORCH_CHECK(!old_sizes.empty(), "Input tensor must have one or more dimensions"); TORCH_CHECK(old_sizes[old_sizes.size()-1] == 2, "Tensor must have a last dimension of size 2"); SymDimVector new_sizes(old_sizes.begin(), old_sizes.end() - 1); const auto new_strides = computeStrideForViewAsComplex(self.sym_strides()); const auto complex_type = c10::toComplexType(self.scalar_type()); TORCH_CHECK(self.sym_storage_offset() % 2 == 0, "Tensor must have a storage_offset divisible by 2"); const auto new_storage_offset = self.sym_storage_offset() / 2; return view_tensor(self, complex_type, new_storage_offset, new_sizes, new_strides); } } // namespace at::native