#pragma once #include #include namespace at::native { using padding_fn = void (*)(const Tensor&, const Tensor&, IntArrayRef); // reflection padding DECLARE_DISPATCH(padding_fn, reflection_pad1d_kernel); DECLARE_DISPATCH(padding_fn, reflection_pad1d_backward_kernel); DECLARE_DISPATCH(padding_fn, reflection_pad2d_kernel); DECLARE_DISPATCH(padding_fn, reflection_pad2d_backward_kernel); DECLARE_DISPATCH(padding_fn, reflection_pad3d_kernel); DECLARE_DISPATCH(padding_fn, reflection_pad3d_backward_kernel); // replication padding DECLARE_DISPATCH(padding_fn, replication_pad1d_kernel); DECLARE_DISPATCH(padding_fn, replication_pad1d_backward_kernel); DECLARE_DISPATCH(padding_fn, replication_pad2d_kernel); DECLARE_DISPATCH(padding_fn, replication_pad2d_backward_kernel); DECLARE_DISPATCH(padding_fn, replication_pad3d_kernel); DECLARE_DISPATCH(padding_fn, replication_pad3d_backward_kernel); namespace padding { template static inline void check_valid_input(const Tensor& input, IntArrayRef padding) { TORCH_CHECK(padding.size() == 2 * dim, "padding size is expected to be ", 2 * dim, ", but got: ", padding.size()); int input_dim = input.dim(); bool is_batch_mode = input_dim == (dim + 2); bool valid_batch_mode = is_batch_mode; bool valid_non_batch_mode = !is_batch_mode; if (is_batch_mode) { // allow batch size of 0-dim. for (const auto d : c10::irange(1, input_dim)) { valid_batch_mode = valid_batch_mode && input.size(d) != 0; } } else { for (const auto d : c10::irange(0, input_dim)) { valid_non_batch_mode = valid_non_batch_mode && input.size(d) != 0; } } // allow empty batch size but not other dimensions. TORCH_CHECK(valid_batch_mode || valid_non_batch_mode, "Expected ", dim + 1, "D or ", dim + 2, "D (batch mode) tensor with possibly 0 batch size and other non-zero dimensions for input, but got: ", input.sizes()); } } // namespace padding } // at::native