import inspect import textwrap import torch.jit from torch.jit._builtins import _find_builtin # this file is for generating documentation using sphinx autodoc # > help(torch.jit.supported_ops) will also give a nice listed of the # supported ops programmatically def _hidden(name): return name.startswith("_") and not name.startswith("__") def _emit_type(type): return str(type) def _emit_arg(indent, i, arg): v = f"{arg.name} : {_emit_type(arg.type)}" default = arg.default_value if default is not None: v = f"{v}={str(default)}" if i > 0: v = f"\n{' ' * indent}{v}" return v def _emit_args(indent, arguments): return ",".join(_emit_arg(indent, i, arg) for i, arg in enumerate(arguments)) def _emit_ret(ret): return _emit_type(ret.type) def _emit_rets(returns): if len(returns) == 1: return _emit_ret(returns[0]) return f"Tuple[{', '.join(_emit_ret(r) for r in returns)}]" def _emit_schema(mod, name, schema, arg_start=0, padding=4): if mod is None: qualified_name = name else: qualified_name = f"{mod}.{name}" schema_str = "{}({}) -> {}".format( qualified_name, _emit_args(len(qualified_name) + 1 + padding, schema.arguments[arg_start:]), _emit_rets(schema.returns), ) return schema_str def _get_tensor_ops(): def is_tensor_method(schema): if len(schema.arguments) == 0: return False self = schema.arguments[0] if self.name != "self": return False if not self.type.isSubtypeOf(torch._C.TensorType.get()): return False return True methods = [] # discover methods for elem in dir(torch.Tensor): if not _hidden(elem): schemas = torch._C._jit_get_schemas_for_operator("aten::" + elem) for schema in schemas: if is_tensor_method(schema): methods.append(_emit_schema("Tensor", elem, schema, arg_start=1)) return "Supported Tensor Methods", methods def _get_nn_functional_ops(): functions = [] # Iterate over torch.nn.functional mod = torch.nn.functional name = mod.__name__ for elem in dir(torch.nn.functional): attr = getattr(mod, elem) if not inspect.isfunction(attr) or _hidden(elem[0]): # Ignore non-functions and internal methods continue attr_module = inspect.getmodule(attr) if not attr_module: raise RuntimeError(f"Module for {attr} not found") if "torch.nn.functional" not in attr_module.__name__: # Ignore functions from outside torch.nn.functional continue try: # compile fn, get schema scripted = torch.jit.script(attr) scripted_schema = scripted.schema functions.append(_emit_schema(name, elem, scripted_schema)) except: # noqa: B001,E722 # Skip interpolate / boolean dispatched things pass # Iterate over modules that we know contain a lot of builtins for mod in torch.jit._builtins._modules_containing_builtins: name = mod.__name__ for elem in dir(mod): builtin = _find_builtin(getattr(mod, elem)) if builtin is not None: schemas = torch._C._jit_get_schemas_for_operator(builtin) for schema in schemas: # remove _tan but not __and__ if not _hidden(elem): functions.append(_emit_schema(name, elem, schema)) return "Supported PyTorch Functions", functions def _get_builtins_helper(): builtins = [] for fn, _builtin_name in torch.jit._builtins._builtin_ops: mod = inspect.getmodule(fn) if not hasattr(fn, "__name__"): # typing classes continue if not mod: continue if _hidden(fn.__name__) or _hidden(fn.__qualname__) or _hidden(mod.__name__): # skip internal-only methods continue if "torch._C" in mod.__name__: continue builtins.append((fn, _builtin_name)) return builtins def _is_math_fn(fn): mod = inspect.getmodule(fn) if not mod: raise RuntimeError(f"Module for {fn} not found") return mod.__name__ == "math" def _get_torchscript_builtins(): functions = [] builtins = filter(lambda fn: not _is_math_fn(fn[0]), _get_builtins_helper()) builtins_list = list(builtins) # Iterate over the specially added builtins for fn, _builtin_name in builtins_list: mod = inspect.getmodule(fn) if not mod: raise RuntimeError(f"Module for {fn} not found") builtin = _find_builtin(fn) if builtin is not None: schemas = torch._C._jit_get_schemas_for_operator(builtin) for schema in schemas: functions.append(_emit_schema(mod.__name__, fn.__name__, schema)) pass return "TorchScript Builtin Functions", functions def _get_math_builtins(): functions = [] builtins = filter(lambda fn: _is_math_fn(fn[0]), _get_builtins_helper()) builtins_list = list(builtins) # Iterate over the specially added builtins for fn, _builtin_name in builtins_list: mod = inspect.getmodule(fn) if not mod: raise RuntimeError(f"Module for {fn} not found") builtin = _find_builtin(fn) if builtin is not None: schemas = torch._C._jit_get_schemas_for_operator(builtin) for schema in schemas: schema_str = _emit_schema(mod.__name__, fn.__name__, schema) if "Tensor" in schema_str: # Skip Tensor ops that have the same name as math functions # (they will show up in the tensor methods section) continue functions.append(schema) pass return "``math`` Module", functions def _get_global_builtins(): # Taken from the 'globals' map in torch/csrc/jit/frontend/ir_emitter.cpp supported_builtins = [ "print", "tuple", "float", "complex", "int", "bool", "str", "getattr", "hasattr", "isinstance", "len", "hex", "oct", "round", "hash", "min", "max", "abs", "all", "divmod", "list", "ord", "chr", "bin", "range", "zip", "enumerate", "sorted", ] op_renames = { "bool": "aten::Bool", "int": "aten::Int", "float": "aten::Float", "complex": "aten::Complex", "abs": "prim::abs", "max": "prim::max", "min": "prim::min", "range": "fake::does_not_exist", } schemaless_op_explanations = { "print": "Print any value", "tuple": "Lists cannot be converted to tuples with this method since their size is not statically known", "getattr": "Attribute name must be a literal string", "hasattr": "Attribute name must be a literal string", "isinstance": "Result is static", "zip": "Arguments must be iterable. See :ref:`Iterables ` for details.", "enumerate": "Arguments must be iterable. See :ref:`Iterables ` for details.", "range": "Can only be used as an iterator in a for loop", } magic_methods = [ ("complex", "__complex__"), ("float", "__float__"), ("int", "__int__"), ("bool", "__bool__"), ("str", "__str__"), ("len", "__len__"), ("hex", "__hex__"), ("oct", "__oct__"), ] magic_methods_rows = [] for fn, magic_method in magic_methods: magic_methods_rows.append(f'"{fn}", "``{magic_method}``"') schematized_ops = [] schemaless_ops = [] for fn in supported_builtins: op_name = f"aten::{fn}" if fn in op_renames: op_name = op_renames[fn] schemas = torch._C._jit_get_schemas_for_operator(op_name) for s in schemas: schematized_ops.append(_emit_schema(None, fn, s, padding=0)) if len(schemas) > 0: schematized_ops.append("") else: table_row = f'":any:`{fn}`", "{schemaless_op_explanations[fn]}"' schemaless_ops.append(table_row) schematized_ops_str = "\n".join(schematized_ops) schemaless_ops_str = "\n".join(schemaless_ops) magic_methods_rows_str = "\n".join(magic_methods_rows) schematized_ops_str = textwrap.indent(schematized_ops_str, "\t") schemaless_ops_str = textwrap.indent(schemaless_ops_str, "\t") magic_methods_rows_str = textwrap.indent(magic_methods_rows_str, "\t") section = f""" The functions in the following table are supported but do not have a static schema .. csv-table:: :header: "Function", "Note" {schemaless_ops_str} The following functions will use the corresponding magic method on :any:`TorchScript classes` .. csv-table:: :header: "Function", "Magic Method" {magic_methods_rows_str} These built-in functions use the schema .. rst-class:: codeblock-height-limiter :: {schematized_ops_str} """ return "Python Built-in Functions", section def _list_supported_ops(): def emit_block(decls): return "\n.. rst-class:: codeblock-height-limiter\n\n::\n\n{}\n".format( "".join(f" {d}\n\n" for d in decls) ) body = "" op_gathering_fns = ( _get_tensor_ops, _get_nn_functional_ops, _get_torchscript_builtins, _get_global_builtins, _get_math_builtins, ) for fn in op_gathering_fns: header, items = fn() link_target = header.replace("`", "").replace("-", "").lower().replace(" ", "-") if isinstance(items, str): section = f"{header}\n{'~' * len(header)}\n{items}\n" else: section = f"{header}\n{'~' * len(header)}\n{emit_block(items)}" section = f".. _{link_target}:" + "\n\n" + section body += section return body __doc__ = _list_supported_ops()