from .quantize import * # noqa: F403 from .observer import * # noqa: F403 from .qconfig import * # noqa: F403 from .fake_quantize import * # noqa: F403 from .fuse_modules import fuse_modules from .stubs import * # noqa: F403 from .quant_type import * # noqa: F403 from .quantize_jit import * # noqa: F403 # from .quantize_fx import * from .quantization_mappings import * # noqa: F403 from .fuser_method_mappings import * # noqa: F403 def default_eval_fn(model, calib_data): r""" Default evaluation function takes a torch.utils.data.Dataset or a list of input Tensors and run the model on the dataset """ for data, target in calib_data: model(data) __all__ = [ "QuantWrapper", "QuantStub", "DeQuantStub", # Top level API for eager mode quantization "quantize", "quantize_dynamic", "quantize_qat", "prepare", "convert", "prepare_qat", # Top level API for graph mode quantization on TorchScript "quantize_jit", "quantize_dynamic_jit", "_prepare_ondevice_dynamic_jit", "_convert_ondevice_dynamic_jit", "_quantize_ondevice_dynamic_jit", # Top level API for graph mode quantization on GraphModule(torch.fx) # 'fuse_fx', 'quantize_fx', # TODO: add quantize_dynamic_fx # 'prepare_fx', 'prepare_dynamic_fx', 'convert_fx', "QuantType", # quantization type # custom module APIs "get_default_static_quant_module_mappings", "get_static_quant_module_class", "get_default_dynamic_quant_module_mappings", "get_default_qat_module_mappings", "get_default_qconfig_propagation_list", "get_default_compare_output_module_list", "get_quantized_operator", "get_fuser_method", # Sub functions for `prepare` and `swap_module` "propagate_qconfig_", "add_quant_dequant", "swap_module", "default_eval_fn", # Observers "ObserverBase", "WeightObserver", "HistogramObserver", "observer", "default_observer", "default_weight_observer", "default_placeholder_observer", "default_per_channel_weight_observer", # FakeQuantize (for qat) "default_fake_quant", "default_weight_fake_quant", "default_fixed_qparams_range_neg1to1_fake_quant", "default_fixed_qparams_range_0to1_fake_quant", "default_per_channel_weight_fake_quant", "default_histogram_fake_quant", # QConfig "QConfig", "default_qconfig", "default_dynamic_qconfig", "float16_dynamic_qconfig", "float_qparams_weight_only_qconfig", # QAT utilities "default_qat_qconfig", "prepare_qat", "quantize_qat", # module transformations "fuse_modules", ]