from contextlib import contextmanager from typing import Any, List, Tuple, cast import random import torch import time from torch.utils.benchmark import Timer def extract_ir(filename: str) -> List[str]: BEGIN = "" END = "" pfx = None current = "" graphs = [] with open(filename) as f: split_strs = f.read().split(BEGIN) for i, split_str in enumerate(split_strs): if i == 0: continue end_loc = split_str.find(END) if end_loc == -1: continue s = split_str[:end_loc] pfx = split_strs[i - 1].splitlines()[-1] lines = [x[len(pfx):] for x in s.splitlines(keepends=True)] graphs.append(''.join(lines)) return graphs def make_tensor_from_type(inp_type: torch._C.TensorType): size = inp_type.sizes() stride = inp_type.strides() device = inp_type.device() dtype = inp_type.dtype() assert size is not None assert stride is not None assert device is not None assert dtype is not None return torch.empty_strided(size=size, stride=stride, device=device, dtype=dtype) def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]: graph = torch._C.parse_ir(ir, parse_tensor_constants=True) graph.makeMultiOutputIntoTuple() inputs = [] for inp in graph.inputs(): if isinstance(inp.type(), torch._C.FloatType): inputs.append(random.uniform(.1, 100)) elif isinstance(inp.type(), torch._C.IntType): inputs.append(random.randint(1, 100)) elif isinstance(inp.type(), torch._C.TensorType): tensorType = cast(torch._C.TensorType, inp.type()) inputs.append(make_tensor_from_type(tensorType)) elif isinstance(inp.type(), torch._C.BoolType): inputs.append(random.randint(0, 1) == 1) else: raise NotImplementedError(f"A default value is not implemented for type {inp.type()}") func = torch._C._create_function_from_graph("forward", graph) torch._C._jit_pass_erase_shape_information(func.graph) return (func, inputs) def time_cuda(fn, inputs, test_runs): t = Timer(stmt="fn(*inputs)", globals={"fn": fn, "inputs" : inputs}) times = t.blocked_autorange() return times.median * 1000 # time in ms def time_cpu(fn, inputs, test_runs): s = time.perf_counter() for _ in range(test_runs): fn(*inputs) e = time.perf_counter() return (e - s) / test_runs * 1000 # time in ms def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float: graph, _ = load_graph_and_inputs(ir) for _ in range(warmup_runs): graph(*inputs) is_cpu = None for input in inputs: if isinstance(input, torch.Tensor): is_cpu = input.device.type == "cpu" break assert is_cpu is not None out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs) return out @contextmanager def no_fuser(*args, **kwargs): old_optimize = torch._C._get_graph_executor_optimize(False) try: yield finally: torch._C._get_graph_executor_optimize(old_optimize) def run_baseline_no_fusion(ir, inputs) -> float: with no_fuser(): return run_test(ir, inputs) def run_nnc(ir, inputs, dynamic) -> float: try: strat = [("DYNAMIC", 10)] if dynamic else [("STATIC", 10)] old_strat = torch.jit.set_fusion_strategy(strat) with torch.jit.fuser("fuser1"): return run_test(ir, inputs) finally: torch.jit.set_fusion_strategy(old_strat) def run_nvfuser(ir, inputs) -> float: with torch.jit.fuser("fuser2"): return run_test(ir, inputs)