# coding=utf-8 # Copyright 2022 The OpenAI Team Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Jukebox model.""" import math import os from typing import List, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.nn import LayerNorm as FusedLayerNorm from ...activations import ACT2FN from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, logging from ...utils.logging import tqdm from .configuration_jukebox import ATTENTION_PATTERNS, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig logger = logging.get_logger(__name__) from ..deprecated._archive_maps import JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 def filter_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits (`torch.Tensor`): logits distribution shape (vocabulary size) top_k (`int`, *optional*, defaults to 0): When `top_k >0` keep only top key tokens with highest probability (top-k filtering). top_p (`int`, *optional*, defaults to 0): When `top_p>0.0` keep the top tokens with cumulative probability >= `top_p` (nucleus filtering). """ logits = logits.clone() top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k, dim=-1)[0][..., -1:] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # indices_to_remove = sorted_indices[sorted_indices_to_remove] indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_( dim=-1, index=sorted_indices, src=sorted_indices_to_remove ) logits[indices_to_remove] = filter_value return logits def get_relevant_lyric_tokens(full_tokens, max_n_lyric_tokens, total_length, offset, duration): """ Extract only the relevant tokens based on the character position. A total of `max_n_lyric_tokens` tokens will be returned. If the provided token sequence is smaller, it will be padded, otherwise, only characters ranging from the midpoint - `max_n_lyric_tokens//2` to the midpoint + `max_n_lyric_tokens//2` will be returned. This *focuses* on the most relevant tokens (in time) for the sequence. Args: full_tokens (`List[int]`): List containing the token ids of the entire lyrics. total_length (`int`): Total expected length of the music (not all of it is generated, see duration), in samples. offset (`int`): Starting sample in the music. If the offset is greater than 0, the lyrics will be shifted take that into account duration (`int`): Expected duration of the generated music, in samples. The duration has to be smaller than the total length, which represent the overall length of the signal, """ full_tokens = full_tokens[0] if len(full_tokens) < max_n_lyric_tokens: tokens = torch.cat( [torch.zeros(max_n_lyric_tokens - len(full_tokens), dtype=torch.long).to(full_tokens.device), full_tokens] ) indices = [-1] * (max_n_lyric_tokens - len(full_tokens)) + list(range(0, len(full_tokens))) else: midpoint = int(len(full_tokens) * (offset + duration / 2.0) / total_length) midpoint = min(max(midpoint, max_n_lyric_tokens // 2), len(full_tokens) - max_n_lyric_tokens // 2) tokens = full_tokens[midpoint - max_n_lyric_tokens // 2 : midpoint + max_n_lyric_tokens // 2] indices = list(range(midpoint - max_n_lyric_tokens // 2, midpoint + max_n_lyric_tokens // 2)) return tokens.unsqueeze(dim=0), indices # Break total_length into hops/windows of size n_ctx separated by hop_length def get_starts(total_length, n_ctx, hop_length): starts = [] for start in range(0, total_length - n_ctx + hop_length, hop_length): if start + n_ctx >= total_length: # Last hop could be smaller, we make it n_ctx to maximise context start = total_length - n_ctx starts.append(start) return starts def get_alignment(music_tokens, labels, prior, config): level = prior.levels - 1 # Top level used n_ctx = prior.n_ctx tokens = music_tokens[level] batch_size, total_length = tokens.shape[0], tokens.shape[1] if total_length < n_ctx: padding_length = n_ctx - total_length tokens = torch.cat( [tokens, torch.zeros(batch_size, n_ctx - total_length, dtype=tokens.dtype, device=tokens.device)], dim=1 ) total_length = tokens.shape[1] else: padding_length = 0 hop_length = int(config.hop_fraction[-level - 1] * prior.n_ctx) alignment_head, alignment_layer = config.prior_alignment_head[0], config.prior_alignment_layer[0] attn_layers = {alignment_layer} alignment_hops = {} indices_hops = {} for start in tqdm(get_starts(total_length, n_ctx, hop_length), desc="Computing lyric to music alignment "): end = start + n_ctx # set metadata offset, sample_length and lyrics tokens metadata, indices_hop = prior.get_metadata(labels, start, config.sample_length, get_indices=True, offset=0) tokens_bs = torch.chunk(tokens, batch_size, dim=0) metadata_bs = torch.chunk(metadata, batch_size, dim=0) w_hops = [] for tokens_i, metadata_i in zip(tokens_bs, metadata_bs): w_hop = prior.forward_tokens(tokens_i[:, start:end], [], metadata_i, get_attn_weights=attn_layers) w_hops.append(w_hop[0][:, alignment_head]) del w_hop weights = torch.cat(w_hops, dim=0) del w_hops alignment_hop = weights.float().cpu().numpy() del weights # alignment_hop has shape (bs, n_ctx, nb_relevant_lyric_tokens) # indices_hop is a list of len=bs, each entry of len hps.nb_relevant_lyric_tokens indices_hops[start] = indices_hop alignment_hops[start] = alignment_hop # Combine attn for each hop into attn for full range # Use indices to place them into correct place for corresponding source tokens alignments = [] for item in range(batch_size): # Note each item has different length lyrics full_tokens = labels[0, 3:] alignment = np.zeros((total_length, len(full_tokens) + 1)) for start in reversed(get_starts(total_length, n_ctx, hop_length)): end = start + n_ctx alignment_hop = alignment_hops[start][item] indices = indices_hops[start][item] alignment[start:end, indices] = alignment_hop alignment = alignment[: total_length - padding_length, :-1] # remove token padding, and last lyric index alignments.append(alignment) return alignments def save_temp_audio(fname, lvl, metas, aud): aud = torch.clamp(aud, -1, 1).cpu().numpy() for i in list(range(aud.shape[0])): if metas is not None: artists, genres, lyrics = list(metas)[i].values() path = f"{fname}/lvl_{lvl}-{artists}-{genres}-{lyrics[:5]}-{i}" np.save(path, aud[i]) else: np.save(f"{fname}/lvl_{lvl}-sample-{i}", aud[i]) def get_mask(mask, query_length, key_value_length, blocks, spread, device, sample, sample_t): # returns a mask of shape 1 x 1 x query_length x key_value_length or None if masking is not needed. if mask is None or query_length == 1: return None offset = sample_t - query_length if sample else max(key_value_length - query_length, 0) if mask == "autoregressive": # Masked dense mask = torch.ones(query_length, key_value_length, device=device).tril(offset) elif mask == "summary": # Masked summary mask = torch.ones(query_length, query_length, device=device).tril() mask = torch.ones(query_length, query_length, device=device).tril() mask = mask.view(query_length, blocks, query_length // blocks)[:, :-1, -key_value_length // blocks :] mask = ( torch.nn.functional.pad( mask, (0, 0, 1, 0), value=1, ) .contiguous() .view(query_length, key_value_length) ) elif mask == "prime": mask = torch.ones(query_length, key_value_length, device=device).tril(offset) return mask.view(1, 1, query_length, key_value_length) class JukeboxConv1D(nn.Module): def __init__(self, input_width, output_width): super().__init__() self.input_width = input_width self.output_width = output_width weight = torch.empty(input_width, output_width) bias = torch.zeros(output_width) self.weight = nn.Parameter(weight) self.bias = nn.Parameter(bias) def forward(self, hidden_states): size_out = (*hidden_states.size()[:-1], self.output_width) hidden_states = torch.addmm( self.bias.type_as(hidden_states), hidden_states.view(-1, hidden_states.size(-1)), self.weight.type_as(hidden_states), ) hidden_states = hidden_states.view(*size_out) return hidden_states class JukeboxResConv1DBlock(nn.Module): def __init__(self, config, conv_width, depth=1, res_scale=1.0): super().__init__() hidden_dim = config.res_convolution_multiplier * conv_width dilation = config.res_dilation_growth_rate**depth padding = dilation self.res_scale = res_scale self.activation = nn.ReLU() self.conv1d_1 = nn.Conv1d(conv_width, hidden_dim, 3, 1, padding, dilation) self.conv1d_2 = nn.Conv1d(hidden_dim, conv_width, 1, 1, 0) def forward(self, hidden_states): residuals = hidden_states hidden_states = self.activation(hidden_states) hidden_states = self.conv1d_1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.conv1d_2(hidden_states) return residuals + self.res_scale * hidden_states class JukeboxResnet1D(nn.Module): def __init__(self, config, conv_width, n_depth, reverse_dilation=False): super().__init__() self.dilation_cycle = config.res_dilation_cycle res_scale = 1.0 if not config.conv_res_scale else 1.0 / math.sqrt(n_depth) blocks = [] for depth in range(n_depth): block_depth = depth if self.dilation_cycle is None else depth % self.dilation_cycle blocks.append(JukeboxResConv1DBlock(config, conv_width, block_depth, res_scale)) if reverse_dilation: blocks = blocks[::-1] self.resnet_block = nn.ModuleList(blocks) def forward(self, hidden_states): for block in self.resnet_block: hidden_states = block(hidden_states) return hidden_states class JukeboxEncoderConvBlock(nn.Module): def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t): super().__init__() blocks = [] filter_t = stride_t * 2 pad_t = stride_t // 2 if down_t > 0: for i in range(down_t): blocks.append(nn.Conv1d(embed_dim if i == 0 else hidden_dim, hidden_dim, filter_t, stride_t, pad_t)) blocks.append(JukeboxResnet1D(config, hidden_dim, depth)) self.proj_out = nn.Conv1d(hidden_dim, config.embed_dim, 3, 1, 1) self.downsample_block = nn.ModuleList(blocks) def forward(self, hidden_states): for block in self.downsample_block: hidden_states = block(hidden_states) hidden_states = self.proj_out(hidden_states) return hidden_states class JukeboxEncoder(nn.Module): def __init__(self, config, width, depth, levels, downs_t, strides_t): super().__init__() self.levels = levels self.level_blocks = nn.ModuleList() iterator = zip(list(range(self.levels)), downs_t, strides_t) for i, down_t, stride_t in iterator: self.level_blocks.append( JukeboxEncoderConvBlock( config, config.conv_input_shape if i == 0 else config.embed_dim, width, depth, down_t, stride_t ) ) def forward(self, hidden_states): all_hidden_states = [] # 64, 32, ... for level in range(self.levels): level_block = self.level_blocks[level] hidden_states = level_block(hidden_states) all_hidden_states.append(hidden_states) return all_hidden_states class JukeboxDecoderConvBock(nn.Module): def __init__(self, config, embed_dim, hidden_dim, depth, down_t, stride_t, reverse_dilation=True): self.embed_dim = embed_dim self.hidden_dim = hidden_dim super().__init__() blocks = [] if down_t > 0: filter_t = stride_t * 2 pad_t = stride_t // 2 self.proj_in = nn.Conv1d(embed_dim, hidden_dim, 3, 1, 1) for i in range(down_t): blocks.append(JukeboxResnet1D(config, hidden_dim, depth, reverse_dilation)) blocks.append( nn.ConvTranspose1d( hidden_dim, hidden_dim if i < down_t - 1 else embed_dim, filter_t, stride_t, pad_t ) ) self.upsample_block = nn.ModuleList(blocks) def forward(self, hidden_states): hidden_states = self.proj_in(hidden_states) for block in self.upsample_block: hidden_states = block(hidden_states) return hidden_states class JukeboxDecoder(nn.Module): def __init__(self, config, hidden_dim, depth, levels, downs_t, strides_t): super().__init__() self.levels = levels self.level_blocks = nn.ModuleList() for level, down_t, stride_t in zip(list(range(self.levels)), downs_t, strides_t): self.level_blocks.append( JukeboxDecoderConvBock(config, config.embed_dim, hidden_dim, depth, down_t, stride_t) ) self.out = nn.Conv1d(config.embed_dim, config.conv_input_shape, 3, 1, 1) def forward(self, hidden_states, all_levels=True): hidden_state = hidden_states[-1] # 32, 64 ... for level in reversed(range(self.levels)): level_block = self.level_blocks[level] hidden_state = level_block(hidden_state) if level != 0 and all_levels: hidden_state = hidden_state + hidden_states[level - 1] hidden_state = self.out(hidden_state) return hidden_state class JukeboxBottleneckBlock(nn.Module): def __init__(self, config: JukeboxVQVAEConfig): super().__init__() self.nb_discrete_codes = config.nb_discrete_codes self.codebook_width = config.embed_dim self.mu = config.lmu self.threshold = 1.0 self.init = False self.codebook_sum = None self.codebook_elem = None self.register_buffer("codebook", torch.zeros(self.nb_discrete_codes, self.codebook_width)) def _tile(self, hidden_states): dim, embed_width = hidden_states.shape if dim < self.nb_discrete_codes: n_repeats = (self.nb_discrete_codes + dim - 1) // dim std = 0.01 / np.sqrt(embed_width) hidden_states = hidden_states.repeat(n_repeats, 1) hidden_states = hidden_states + torch.randn_like(hidden_states) * std return hidden_states def init_codebook(self, hidden_states): nb_discrete_codes = self.nb_discrete_codes self.init = True codes = self._tile(hidden_states) self.codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes] self.codebook_sum = self.codebook self.codebook_elem = torch.ones(nb_discrete_codes, device=self.codebook.device) def update_codebook(self, hidden_states, latent_states): mu, codebook_width, nb_discrete_codes = self.mu, self.codebook_width, self.nb_discrete_codes with torch.no_grad(): # Calculate new centres # nb_discrete_codes, batch_size * seq_length latent_states_onehot = torch.zeros(nb_discrete_codes, hidden_states.shape[0], device=hidden_states.device) latent_states_onehot.scatter_(0, latent_states.view(1, hidden_states.shape[0]), 1) _codebook_sum = torch.matmul(latent_states_onehot, hidden_states) _codebook_elem = latent_states_onehot.sum(dim=-1) # nb_discrete_codes codes = self._tile(hidden_states) _random_codebook = codes[torch.randperm(codes.shape[0])][:nb_discrete_codes] # Update centres old_codebook = self.codebook self.codebook_sum = mu * self.codebook_sum + (1.0 - mu) * _codebook_sum self.codebook_elem = mu * self.codebook_elem + (1.0 - mu) * _codebook_elem # nb_discrete_codes usage = (self.codebook_elem.view(nb_discrete_codes, 1) >= self.threshold).float() norm_code = self.codebook_sum.view(nb_discrete_codes, codebook_width) / self.codebook_elem.view( nb_discrete_codes, 1 ) self.codebook = usage * (norm_code) + (1 - usage) * _random_codebook _codebook_prob = _codebook_elem / torch.sum(_codebook_elem) # prob of each bin entropy = -torch.sum(_codebook_prob * torch.log(_codebook_prob + 1e-8)) # entropy ie how diverse used_curr = (_codebook_elem >= self.threshold).sum() usage = torch.sum(usage) dk = torch.norm(self.codebook - old_codebook) / np.sqrt(np.prod(old_codebook.shape)) return {"entropy": entropy, "used_curr": used_curr, "usage": usage, "dk": dk} def preprocess(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1).contiguous() hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) if hidden_states.shape[-1] == self.codebook_width: prenorm = torch.norm(hidden_states - torch.mean(hidden_states)) / np.sqrt(np.prod(hidden_states.shape)) elif hidden_states.shape[-1] == 2 * self.codebook_width: x1, x2 = hidden_states[..., : self.codebook_width], hidden_states[..., self.codebook_width :] prenorm = (torch.norm(x1 - torch.mean(x1)) / np.sqrt(np.prod(x1.shape))) + ( torch.norm(x2 - torch.mean(x2)) / np.sqrt(np.prod(x2.shape)) ) # Normalise hidden_states = x1 + x2 return hidden_states, prenorm def postprocess(self, latent_states, dequantised_states, x_shape): batch_size, time = x_shape dequantised_states = dequantised_states.view(batch_size, time, -1).permute(0, 2, 1).contiguous() latent_states = latent_states.view(batch_size, time) return latent_states, dequantised_states def quantise(self, latent_states): # Calculate latent code latent_states codebook_weights = self.codebook.t() distance = ( torch.sum(latent_states**2, dim=-1, keepdim=True) - 2 * torch.matmul(latent_states, codebook_weights) + torch.sum(codebook_weights**2, dim=0, keepdim=True) ) # (batch_size * latent_states , codebook_weights) min_distance, music_tokens = torch.min(distance, dim=-1) fit = torch.mean(min_distance) return music_tokens, fit def dequantise(self, music_tokens): dequantised_states = F.embedding(music_tokens, self.codebook) return dequantised_states def encode(self, latent_states): samples, _, seq_len = latent_states.shape # Preprocess. latent_states, _ = self.preprocess(latent_states) # Quantise music_tokens, _ = self.quantise(latent_states) # Postprocess. music_tokens = music_tokens.view(samples, seq_len) return music_tokens def decode(self, music_tokens): samples, seq_len = music_tokens.shape # Dequantise dequantised_states = self.dequantise(music_tokens) # Postprocess dequantised_states = ( dequantised_states.view(samples, seq_len, self.codebook_width).permute(0, 2, 1).contiguous() ) return dequantised_states def forward(self, hidden_states, update_codebook=True): samples, _, seq_len = hidden_states.shape # Preprocess hidden_states, prenorm = self.preprocess(hidden_states) # Init codebook if not inited if update_codebook and not self.init: self.init_codebook(hidden_states) # Quantise and dequantise through bottleneck music_tokens, fit = self.quantise(hidden_states) dequantised_states = self.dequantise(music_tokens) # Update embeddings if update_codebook: update_metrics = self.update_codebook(hidden_states, music_tokens) else: update_metrics = {} # Loss commit_loss = torch.norm(dequantised_states.detach() - hidden_states) ** 2 / np.prod(hidden_states.shape) # Passthrough dequantised_states = hidden_states + (dequantised_states - hidden_states).detach() # Postprocess music_tokens, dequantised_states = self.postprocess(music_tokens, dequantised_states, (samples, seq_len)) return music_tokens, dequantised_states, commit_loss, dict(fit=fit, pn=prenorm, **update_metrics) class JukeboxBottleneck(nn.Module): def __init__(self, config, levels): super().__init__() self.levels = levels self.level_blocks = nn.ModuleList() for level in range(self.levels): self.level_blocks.append(JukeboxBottleneckBlock(config)) def encode(self, raw_audio): music_tokens = [ level_block.encode(hidden_states) for (level_block, hidden_states) in zip(self.level_blocks, raw_audio) ] return music_tokens def decode(self, music_tokens, start_level=0, end_level=None): if end_level is None: end_level = self.levels quantised_audio = [ level_block.decode(z) for (level_block, z) in zip(self.level_blocks[start_level:end_level], music_tokens) ] return quantised_audio def forward(self, input_audio): music_tokens, quantised_states, commit_losses, metrics = [], [], [], [] for level in range(self.levels): level_block = self.level_blocks[-level - 1] hidden_states = input_audio[level] sampled_tokens, quantised_state, commit_loss, metric = level_block( hidden_states, update_codebook=self.training ) music_tokens.append(sampled_tokens) if not self.training: # Be extra paranoid and make sure the encoder weights can't # change from straight-through estimator quantised_state = quantised_state.detach() quantised_states.append(quantised_state) commit_losses.append(commit_loss) if self.training: metrics.append(metric) return music_tokens, quantised_states, commit_losses, metrics JUKEBOX_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (`JukeboxConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( """The Hierarchical VQ-VAE model used in Jukebox. This model follows the Hierarchical VQVAE paper from [Will Williams, Sam Ringer, Tom Ash, John Hughes, David MacLeod, Jamie Dougherty](https://arxiv.org/abs/2002.08111). """, JUKEBOX_START_DOCSTRING, ) class JukeboxVQVAE(PreTrainedModel): config_class = JukeboxVQVAEConfig base_model_prefix = "vqvae" def _init_weights(self, module): if isinstance(module, nn.Embedding): # embed_tokens module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale) elif isinstance(module, JukeboxConv1D): if self.config.zero_out: module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=0.02 * self.config.init_scale) elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out: module.conv1d_2.weight.data.zero_() module.conv1d_2.bias.data.zero_() if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def __init__(self, config: JukeboxVQVAEConfig): super().__init__(config) downs_t = config.res_downs_t strides_t = config.res_strides_t if not config.sample_length: downsamples = [stride**down for stride, down in zip(strides_t, downs_t)] top_raw_to_tokens = np.prod(downsamples) config.sample_length = ( config.sample_length_in_seconds * config.sampling_rate // top_raw_to_tokens ) * top_raw_to_tokens config.sample_length = config.sample_length.astype(int) self.nb_discrete_codes = config.nb_discrete_codes self.commit = config.commit self.sample_length = config.sample_length self.downsamples = [stride**down for stride, down in zip(strides_t, downs_t)] self.hop_lengths = np.cumprod(self.downsamples) self.levels = levels = config.levels self.music_tokens_shapes = [ (int(self.sample_length // self.hop_lengths[-level - 1])) for level in range(levels) ] self.multipliers = config.multipliers if config.multipliers is not None else [1] * levels self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() for level in range(levels): width = config.res_conv_width * self.multipliers[level] depth = config.res_conv_depth * self.multipliers[level] self.encoders.append( JukeboxEncoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1]) ) self.decoders.append( JukeboxDecoder(config, width, depth, level + 1, downs_t[: level + 1], strides_t[: level + 1]) ) self.bottleneck = JukeboxBottleneck(config, levels) def _decode(self, music_tokens, start_level=0, end_level=None): # Decode if end_level is None: end_level = self.levels latent_states = self.bottleneck.decode(music_tokens, start_level=start_level, end_level=end_level) # Use only lowest level decoder, dequantised_state = self.decoders[start_level], latent_states[0:1] dequantised_state = decoder(dequantised_state, all_levels=False) dequantised_state = dequantised_state.permute(0, 2, 1) return dequantised_state def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1) -> torch.Tensor: """ Transforms the input `music_tokens` to their `raw_audio` representation. Args: music_tokens (`torch.LongTensor`): Tensor of music tokens which will be decoded to raw audio by using the codebook. Each music token should be an index to a corresponding `code` vector in the codebook. start_level (`int`, *optional*): Level at which the decoding process will start. Default to 0. end_level (`int`, *optional*): Level at which the decoding process will start. Default to None. bs_chunks (int, *optional*): Number of chunks to process at the same time. """ token_chunks = [torch.chunk(token, bs_chunks, dim=0) for token in music_tokens] dequantised_states = [] for i in range(bs_chunks): music_tokens_i = [chunks[i] for chunks in token_chunks] dequantised_state = self._decode(music_tokens_i, start_level=start_level, end_level=end_level) dequantised_states.append(dequantised_state) return torch.cat(dequantised_states, dim=0) def _encode(self, raw_audio, start_level=0, end_level=None): # Encode if end_level is None: end_level = self.levels input_audio = raw_audio.permute(0, 2, 1).float() latent_states = [] for level in range(self.levels): encoder = self.encoders[level] latent_state = encoder(input_audio) latent_states.append(latent_state[-1]) music_tokens = self.bottleneck.encode(latent_states) return music_tokens[start_level:end_level] def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1): """ Transforms the `input_audio` to a discrete representation made out of `music_tokens`. Args: input_audio (`torch.Tensor`): Raw audio which will be encoded to its discrete representation using the codebook. The closest `code` form the codebook will be computed for each sequence of samples. start_level (`int`, *optional*, defaults to 0): Level at which the encoding process will start. Default to 0. end_level (`int`, *optional*): Level at which the encoding process will start. Default to None. bs_chunks (int, *optional*, defaults to 1): Number of chunks of raw audio to process at the same time. """ audio_chunks = torch.chunk(input_audio, bs_chunks, dim=0) music_tokens_list = [] for chunk_i in audio_chunks: music_tokens_i = self._encode(chunk_i, start_level=start_level, end_level=end_level) music_tokens_list.append(music_tokens_i) music_tokens = [torch.cat(music_tokens_level, dim=0) for music_tokens_level in zip(*music_tokens_list)] return music_tokens def sample(self, n_samples): music_tokens = [ torch.randint(0, self.nb_discrete_codes, size=(n_samples, *music_tokens_shape), device="cpu") for music_tokens_shape in self.music_tokens_shapes ] return self.decode(music_tokens) def forward(self, raw_audio: torch.FloatTensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Forward pass of the VQ-VAE, encodes the `raw_audio` to latent states, which are then decoded for each level. The commit loss, which ensure that the encoder's computed embeddings are close to the codebook vectors, is computed. Args: raw_audio (`torch.FloatTensor`): Audio input which will be encoded and decoded. Returns: `Tuple[torch.Tensor, torch.Tensor]` Example: ```python >>> from transformers import JukeboxVQVAE, set_seed >>> import torch >>> model = JukeboxVQVAE.from_pretrained("openai/jukebox-1b-lyrics").eval() >>> set_seed(0) >>> zs = [torch.randint(100, (4, 1))] >>> model.decode(zs).shape torch.Size([4, 8, 1]) ``` """ # Encode/Decode input_audio = raw_audio.permute(0, 2, 1).float() latent_states = [] for level in range(self.levels): encoder = self.encoders[level] latent_state = encoder(input_audio) latent_states.append(latent_state[-1]) _, music_tokens, commit_losses, _ = self.bottleneck(latent_states) dequantised_states = [] for level in range(self.levels): decoder = self.decoders[level] dequantised_state = decoder(music_tokens[level : level + 1], all_levels=False) dequantised_states.append(dequantised_state.permute(0, 2, 1)) commit_loss = sum(commit_losses) loss = self.commit * commit_loss return dequantised_states, loss class JukeboxMLP(nn.Module): def __init__(self, config): # a single channel is always used in original code super().__init__() embed_dim = config.hidden_size hidden_dim = int(config.mlp_multiplier * embed_dim) self.c_fc = JukeboxConv1D(embed_dim, hidden_dim) self.c_proj = JukeboxConv1D(hidden_dim, embed_dim) self.act = ACT2FN[config.act_fn] self.dropout = nn.Dropout(config.resid_dropout) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class JukeboxLayerNorm(FusedLayerNorm): def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True): super().__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine) self.width = np.prod(normalized_shape) self.max_numel = 65535 * self.width def forward(self, input): if input.numel() > self.max_numel: return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps).type_as(input) else: return super().forward(input).type_as(input) class JukeboxAttention(nn.Module): def __init__(self, config, n_ctx, attn_func="dense_attn"): super().__init__() self.embed_dim = config.hidden_size self.n_heads = config.n_heads self.dropout = config.attn_dropout hidden_dim = int(config.attention_multiplier * self.embed_dim) self.head_dim = hidden_dim // config.n_heads self.n_ctx = n_ctx self.hidden_dim = hidden_dim self.scale = self.head_dim**-0.25 self.mask = config.mask if attn_func == "cross_attention": self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim) self.c_enc_kv = JukeboxConv1D(self.embed_dim, hidden_dim * 2) else: self.c_attn = JukeboxConv1D(self.embed_dim, hidden_dim * 3) self.c_proj = JukeboxConv1D(hidden_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_dropout) self.resid_dropout = nn.Dropout(config.resid_dropout) # Sequence of length seq_len is factored as [blocks, seq_len // blocks] self.attn_func = attn_func if attn_func == "cross_attention": self.qkv = self.decode_qkv elif attn_func == "prime_attn": self.qkv = self.prime_qkv else: self.qkv = self.factored_qkv ATTENTION_MAP = { "dense_attn": (self.dense_attn, "autoregressive"), "block_attn": (self.block_attn, "autoregressive"), "transpose_block_attn": (self.transpose_block_attn, "autoregressive"), "prev_block_attn": (self.prev_block_attn, None), "summary_attn": (self.summary_attn, "summary"), "summary_spread_attn": (self.summary_spread_attn, "summary"), "cross_attention": (self.dense_attn, None), "prime_attn": (self.prime_attn, "prime"), } self.attn, self.attn_mask = ATTENTION_MAP[attn_func] self.blocks = config.blocks self.spread = config.spread if self.blocks is not None: self.block_ctx = self.n_ctx // self.blocks self.sample_t = 0 self.cache = {} self.encoder_len = config.nb_relevant_lyric_tokens # length of the encoder input ids self.record_attn = False def _attn(self, query_states, key_states, value_states, sample): scale = self.scale if self.training: attention_weight = torch.matmul(query_states * scale, key_states * scale) else: attention_weight = torch.matmul(query_states, key_states) attention_weight.mul_(scale * scale) attn_weight_type = attention_weight.dtype attention_weight = attention_weight.float() if self.mask: # Generate appropriate mask to mask out all positions before current # Might take up lot of memory for dense, so can cache it mask = get_mask( self.attn_mask, query_states.size(-2), key_states.size(-1), self.blocks, self.spread, attention_weight.device, sample, self.sample_t, ) if mask is not None: attention_weight = attention_weight * mask + -1e9 * (1 - mask) attention_prob = F.softmax(attention_weight, dim=-1).type(attn_weight_type) if self.record_attn: self.attention_prob = attention_prob if self.attn_func == "prime_attn": # only keep music queries and lyrics keys/values self.attention_prob = self.attention_prob[:, :, self.encoder_len :, : self.encoder_len] attention_prob = self.attn_dropout(attention_prob) context_states = torch.matmul(attention_prob, value_states) return context_states def merge_heads(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() new_hidden_states_shape = (*hidden_states.size()[:-2], hidden_states.size(-2) * hidden_states.size(-1)) return hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct merge_states def split_heads(self, hidden_states, is_key=False): new_hidden_states_shape = ( *hidden_states.size()[:-1], self.n_heads, hidden_states.size(-1) // self.n_heads, ) hidden_states = hidden_states.view(*new_hidden_states_shape) # in Tensorflow implem: fct split_states if is_key: return hidden_states.permute(0, 2, 3, 1) else: return hidden_states.permute(0, 2, 1, 3) def dense_attn(self, query, key, value, sample): query = self.split_heads(query) key = self.split_heads(key, is_key=True) value = self.split_heads(value) context_states = self._attn(query, key, value, sample) context_states = self.merge_heads(context_states) return context_states def block_attn(self, query, key, value, sample): block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: query_length = query.shape[1] query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim) if query_length < seq_len: seq_len = query_length key = key[:, -seq_len:].contiguous() value = value[:, -seq_len:].contiguous() key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def transpose_block_attn(self, query, key, value, sample): block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: block_len = (seq_len - 1) % block_ctx key = key[:, block_len::block_ctx, :] value = value[:, block_len::block_ctx, :] return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: query_length = query.shape[1] query = query.view(batch_size, query_length // block_ctx, block_ctx, embed_dim) query = query.transpose(1, 2).contiguous() query = query.view(batch_size * block_ctx, query_length // block_ctx, embed_dim) key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim) key = key.transpose(1, 2).contiguous() key = key.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim) value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim) value = value.transpose(1, 2).contiguous() value = value.view(batch_size * block_ctx, seq_len // block_ctx, embed_dim) block_attn = self.dense_attn(query, key, value, sample) block_attn = block_attn.view(batch_size, block_ctx, query_length // block_ctx, embed_dim) block_attn = block_attn.transpose(1, 2).contiguous() block_attn = block_attn.view(batch_size, query_length, embed_dim) return block_attn def prev_block_attn(self, query, key, value, sample): block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: block = (seq_len - 1) // block_ctx prev_l = (block - 1) * block_ctx if block > 0: key = key[:, prev_l : prev_l + block_ctx, :] value = value[:, prev_l : prev_l + block_ctx, :] else: key = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype) value = torch.zeros(batch_size, block_ctx, embed_dim, device=query.device, dtype=query.dtype) return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: query_length = query.shape[1] query = query.view(batch_size * query_length // block_ctx, block_ctx, embed_dim) key = key.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :] key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0)) key = key.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) value = value.view(batch_size, seq_len // block_ctx, block_ctx, embed_dim)[:, :-1, :, :] value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0)) value = value.view(batch_size * seq_len // block_ctx, block_ctx, embed_dim) if query_length < seq_len: nb_query_blocks = query_length // block_ctx nb_key_blocks = seq_len // block_ctx seq_len = query_length key = key.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:] key = key.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim) value = value.view(batch_size, nb_key_blocks, block_ctx, embed_dim)[:, -nb_query_blocks:] value = value.contiguous().view(batch_size * nb_query_blocks, block_ctx, embed_dim) return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def summary_attn(self, query, key, value, sample): blocks = self.blocks block_ctx = self.block_ctx batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: key = key[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :] key = torch.nn.functional.pad(key, (0, 0, 1, 0)) value = value[:, block_ctx - 1 : blocks * block_ctx - 1 : block_ctx, :] value = torch.nn.functional.pad(value, (0, 0, 1, 0)) return self.dense_attn(query, key, value, sample).view(batch_size, 1, embed_dim) else: key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :] key = torch.nn.functional.pad(key, (0, 0, 1, 0)) # batch_size, blocks, embed_dim value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -1, :] value = torch.nn.functional.pad(value, (0, 0, 1, 0)) # batch_size, blocks, embed_dim return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def summary_spread_attn(self, query, key, value, sample): blocks = self.blocks spread = self.spread batch_size, seq_len, embed_dim = value.shape # For sample, query_len= 1, key_len = value_len = sample_t if sample: raise NotImplementedError else: key = key.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :] key = torch.nn.functional.pad(key, (0, 0, 0, 0, 1, 0)).contiguous() key = key.view(batch_size, blocks * spread, embed_dim) value = value.view(batch_size, blocks, seq_len // blocks, embed_dim)[:, :-1, -spread:, :] value = torch.nn.functional.pad(value, (0, 0, 0, 0, 1, 0)).contiguous() value = value.view(batch_size, blocks * spread, embed_dim) return self.dense_attn(query, key, value, sample).view(batch_size, seq_len, embed_dim) def prime_attn(self, query, key, value, sample): encoder_len = self._encoder_len key = key[:, :encoder_len] value = value[:, :encoder_len] return self.dense_attn(query, key, value, sample) def factored_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] if last_encoder_hidden_states is not None: raise TypeError("last_encoder_hidden_states should be None") query, key, value = hidden_states.chunk(3, dim=2) if sample: self.sample_t += curr_ctx key, value = self._append_cache(key, value) l_cache = self._suff_cache_len() if self._cache_len() > l_cache: self._slice_cache(-l_cache) if curr_ctx > 1: if self.attn_func != "dense_attn": query = self._pad_to_block_ctx(query, query=True) key = self._pad_to_block_ctx(key) value = self._pad_to_block_ctx(value) sample = False else: key = self.cache["key"] value = self.cache["value"] return query, key, value, sample def prime_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] if last_encoder_hidden_states is not None: raise TypeError("last_encoder_hidden_states should be None") query, key, value = hidden_states.chunk(3, dim=2) if sample: if self._cache_len() < self._encoder_len: self._append_cache(key, value) if self._cache_len() > self._encoder_len: self._slice_cache(0, self._encoder_len) key, value = self.cache["key"], self.cache["value"] self.sample_t += curr_ctx return query, key, value, sample def decode_qkv(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] query = hidden_states if sample: if self.sample_t == 0: self.cache["key"], self.cache["value"] = self.c_enc_kv( last_encoder_hidden_states.type_as(hidden_states) ).chunk(2, dim=2) key, value = self.cache["key"], self.cache["value"] self.sample_t += curr_ctx else: key, value = self.c_enc_kv(last_encoder_hidden_states.type_as(hidden_states)).chunk(2, dim=2) return query, key, value, sample def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False): curr_ctx = hidden_states.shape[1] hidden_states = self.c_attn(hidden_states) query, key, value, sample = self.qkv( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample ) attention_scores = self.attn(query, key, value, sample) if attention_scores.shape[1] != curr_ctx: offset = self._offset(curr_ctx) attention_scores = attention_scores[:, offset : offset + curr_ctx, :].contiguous() attention_scores = self.c_proj(attention_scores) return self.resid_dropout(attention_scores) @property def _encoder_len(self): encoder_len = self.encoder_len encoder_blocks = (encoder_len // self.blocks) + 1 return encoder_blocks * self.blocks def _offset(self, curr_ctx): if self.attn_func == "dense_attn": return 0 return (self.sample_t - curr_ctx) % self.block_ctx def _pad_to_block_ctx(self, hidden_states, query=False): seq_len = hidden_states.shape[1] offset = self._offset(seq_len) if query else 0 n_blocks = (seq_len + offset + self.block_ctx - 1) // self.block_ctx pad = n_blocks * self.block_ctx - seq_len - offset if pad == 0 and offset == 0: return hidden_states else: return F.pad(hidden_states, (0, 0, offset, pad)) def _cache_len(self): return 0 if "key" not in self.cache else self.cache["key"].shape[1] def _suff_cache_len(self): """ Precondition: key and value are appended with the current context and self.sample_t reflects the 1-indexed sample location in the context. """ previous_block_length = (self.sample_t - 1) % self.block_ctx + 1 + self.block_ctx REQUIRED_CACHE_LEN = { "dense_attn": self.sample_t, "block_attn": (self.sample_t - 1) % self.block_ctx + 1, "transpose_block_attn": self.sample_t, "prev_block_attn": self.sample_t if self.sample_t <= self.block_ctx else previous_block_length, "cross_attn": self.encoder_len, "prime_attn": min(self.sample_t, self._encoder_len), } return REQUIRED_CACHE_LEN[self.attn_func] def _slice_cache(self, start, end=None): self.cache["key"] = self.cache["key"][:, start:end] self.cache["value"] = self.cache["value"][:, start:end] def _append_cache(self, key, value): if "key" not in self.cache: self.cache["key"] = key self.cache["value"] = value else: old_key, old_value = key, value key = torch.cat([self.cache["key"], old_key], dim=1) value = torch.cat([self.cache["value"], old_value], dim=1) del self.cache["key"] del self.cache["value"] del old_key del old_value self.cache["key"] = key self.cache["value"] = value return self.cache["key"], self.cache["value"] def del_cache(self): self.sample_t = 0 if "key" in self.cache: del self.cache["key"] if "value" in self.cache: del self.cache["value"] self.cache = {} class JukeboxBlock(nn.Module): def __init__(self, config, n_ctx, attn_func="dense_attn"): super().__init__() self.width = config.hidden_size self.attn = JukeboxAttention(config, n_ctx, attn_func=attn_func) self.layer_norm_0 = JukeboxLayerNorm(config.hidden_size) self.mlp = JukeboxMLP(config) self.layer_norm_1 = JukeboxLayerNorm(config.hidden_size) self.res_scale = 1.0 / config.num_layers if config.attn_res_scale else 1.0 self.attn_func = attn_func def forward(self, hidden_states, last_encoder_hidden_states, sample=False): residuals = hidden_states hidden_states = self.layer_norm_0(hidden_states) hidden_states = self.attn(hidden_states, last_encoder_hidden_states, sample) output_states = self.layer_norm_1(residuals + hidden_states) output_states = self.mlp(output_states) if self.res_scale == 1.0: output = residuals + hidden_states + output_states else: output = residuals + self.res_scale * (hidden_states + output_states) return output class JukeboxLayerStack(nn.Module): def __init__(self, config, n_ctx): super().__init__() self.n_ctx = n_ctx self.width = config.hidden_size self.num_layers = config.num_layers self.blocks = config.blocks self.attention_pattern = config.attention_pattern if self.blocks is not None: self.block_ctx = n_ctx // self.blocks self.encoder_len = config.nb_relevant_lyric_tokens self.n_heads = config.n_heads # Orders of attn_func attention_pattern = ATTENTION_PATTERNS[self.attention_pattern] self._attn_mods = nn.ModuleList() for depth in range(self.num_layers): self._attn_mods.append(JukeboxBlock(config, n_ctx, attn_func=attention_pattern(depth))) self.saved_attn_weights = [] def set_record_attn(self, record_attn): """ Makes forward prop dump self-attention softmaxes to self.saved_attn_weights. Args: record_attn (`Union[bool,set]`): Either a set of layer indices indicating which layers to store, or a boolean value indicating Whether to dump all. """ def _should_record_attn(layer_idx): if isinstance(record_attn, bool): return record_attn return layer_idx in record_attn for i, layer in enumerate(self._attn_mods): layer.attn.record_attn = _should_record_attn(i) if not record_attn: self.saved_attn_weights = [] def forward(self, hidden_states, last_encoder_hidden_states=None, sample=False): # Blocks for i, attn_layer in enumerate(self._attn_mods): if attn_layer.attn_func == "cross_attention": # attend to the lyrics hidden_states = attn_layer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=sample ) else: hidden_states = attn_layer(hidden_states, last_encoder_hidden_states=None, sample=sample) if attn_layer.attn.record_attn: self.saved_attn_weights.append(attn_layer.attn.c_attn.weight) return hidden_states def del_cache(self): for attn_layer in self._attn_mods: attn_layer.attn.del_cache() class JukeboxPositionalEmbedding(nn.Module): def __init__(self, embed_dim, width): super().__init__() self.pos_emb = nn.Parameter(torch.empty((embed_dim, width))) def forward(self): pos_emb = self.pos_emb return pos_emb class JukeboxConditionalAutoregressive(nn.Module): def __init__( self, config, n_ctx=None, embed_dim=None, audio_conditioning=False, metadata_conditioning=False, is_encoder=False, ): """ Autoregressive model on either lyric tokens or music tokens, or both. The attention pattern should be properly set fro each configuration. Args: config (`JukeboxPriorConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. n_ctx (`int`, *optional*): Number of tokens or lyrics tokens provided in a single pass. embed_dim (`int`, *optional*): Either equals to the dimension of the codebook, or the sum of n_vocab (lyrics) and codeboook dimension, if the model combines lyrics and music tokens, or simply n_vocab if the model is a seperate encoder audio_conditioning (`bool`, *optional*, defaults to `False`): Whether or not the prior supports conditionning on audio. metadata_conditioning (`bool`, *optional*, defaults to `False`): Whether or not the prior supports conditionning on artitst, genres, lyrics and timing. is_encoder (`bool`, *optional*, defaults to `False`): Whether the model is an encoder only model. """ super().__init__() self.width = config.hidden_size self.num_layers = config.num_layers self.n_ctx = n_ctx if n_ctx is not None else config.n_ctx self.embed_dim = embed_dim if embed_dim is not None else config.music_vocab_size self.embed_tokens = nn.Embedding(self.embed_dim, config.hidden_size) self.embed_tokens_dropout = nn.Dropout(config.emb_dropout) self.metadata_conditioning = metadata_conditioning self.audio_conditioning = audio_conditioning if not metadata_conditioning: self.start_token = nn.Parameter(torch.empty((1, config.hidden_size))) self.pos_emb = JukeboxPositionalEmbedding(self.n_ctx, config.hidden_size) self.pos_emb_dropout = nn.Dropout(config.emb_dropout) self.transformer = JukeboxLayerStack(config, n_ctx=self.n_ctx) self.is_encoder = is_encoder self.encoder_len = config.nb_relevant_lyric_tokens if config.merged_decoder: # Merged piped model uses this setup self.add_cond_after_transformer = False self.share_embed_tokens_fc_proj_out = False else: self.add_cond_after_transformer = True self.share_embed_tokens_fc_proj_out = True if not is_encoder: self.fc_proj_out = nn.Linear(config.hidden_size, self.embed_dim, bias=False) if self.share_embed_tokens_fc_proj_out: self.fc_proj_out.weight = self.embed_tokens.weight self.loss = torch.nn.CrossEntropyLoss() def forward( self, tokens, audio_conditioning=None, metadata_conditioning=None, last_encoder_hidden_states=None, get_preds=False, get_acts=False, get_sep_loss=False, ): """ Args: tokens (`torch.tensor`): Can represent music tokens, lyrics tokens or both, depending on the configuration. """ # Preprocess. batch_size = tokens.shape[0] with torch.no_grad(): tokens = tokens.view(batch_size, -1).long() if not self.audio_conditioning: audio_conditioning = torch.zeros( (batch_size, 1, self.width), device=tokens.device, dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype, ) target = tokens # Target hidden_states = self.embed_tokens(tokens) # Shift by 1, and fill in start token hidden_states = torch.cat((hidden_states[:, -1:], hidden_states[:, :-1]), dim=1) if self.metadata_conditioning: hidden_states[:, 0] = metadata_conditioning.view(batch_size, self.width) else: hidden_states[:, 0] = self.start_token hidden_states = ( self.embed_tokens_dropout(hidden_states) + self.pos_emb_dropout(self.pos_emb()) + audio_conditioning ) # Pos emb and dropout hidden_states = self.transformer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states ) # Transformer if self.add_cond_after_transformer: # Piped doesnt add x_cond hidden_states = hidden_states + audio_conditioning activations = hidden_states if self.is_encoder: return hidden_states hidden_states = self.fc_proj_out(hidden_states) # Predictions loss_fn = nn.CrossEntropyLoss() if get_sep_loss: lyric_hidden_states = hidden_states[:, : self.encoder_len].reshape(-1, self.embed_dim) token_hidden_states = hidden_states[:, self.encoder_len :].reshape(-1, self.embed_dim) lyric_loss = loss_fn(lyric_hidden_states, target[:, : self.encoder_len].reshape(-1)) / np.log(2.0) music_token_loss = loss_fn(token_hidden_states, target[:, self.encoder_len :].reshape(-1)) / np.log(2.0) loss = (lyric_loss, music_token_loss) # Note order! Lyric is first else: loss = loss_fn(hidden_states.view(-1, self.embed_dim), target.view(-1)) / np.log(2.0) # Loss if get_preds: return loss, hidden_states elif get_acts: return loss, activations else: return loss, None def get_emb(self, sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning): if sample_t == 0: hidden_states = torch.empty(n_samples, 1, self.width, dtype=self.embed_tokens.weight.dtype).to( self.embed_tokens.weight.device ) if self.metadata_conditioning: hidden_states[:, 0] = metadata_conditioning.view(n_samples, self.width) else: hidden_states[:, 0] = self.start_token else: hidden_states = self.embed_tokens(tokens) if audio_conditioning.shape == (n_samples, self.n_ctx, self.width): cond = audio_conditioning[:, sample_t : sample_t + 1, :] else: cond = audio_conditioning # Pos emb, dropout is identity at eval time hidden_states = hidden_states + self.pos_emb()[sample_t : sample_t + 1] + cond return hidden_states, cond def sample( self, n_samples, audio_conditioning=None, metadata_conditioning=None, last_encoder_hidden_states=None, temp=1.0, top_k=0, top_p=0.0, get_preds=False, sample_tokens=None, ): if sample_tokens is None: sample_tokens = self.n_ctx if not self.audio_conditioning: audio_conditioning = torch.zeros( (n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype ).to(self.fc_proj_out.device) with torch.no_grad(): sampled_tokens = [] tokens = None if get_preds: preds = [] iter = tqdm(range(0, sample_tokens), leave=False) for sample_t in iter: iter.set_description(f"Ancestral sampling {sample_tokens} music tokens", refresh=True) hidden_states, cond = self.get_emb( sample_t, n_samples, tokens, audio_conditioning, metadata_conditioning ) hidden_states = self.transformer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True ) if self.add_cond_after_transformer: hidden_states = hidden_states + cond hidden_states = self.fc_proj_out(hidden_states) # Predictions if get_preds: preds.append(hidden_states.clone()) # Adjust logits hidden_states = hidden_states / temp hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p) # Sample and replace hidden_states tokens = torch.distributions.Categorical(logits=hidden_states).sample() sampled_tokens.append(tokens.clone()) del tokens self.transformer.del_cache() tokens = torch.cat(sampled_tokens, dim=1) if get_preds: preds = torch.cat(preds, dim=1) if get_preds: return tokens, preds else: return tokens def split_chunks(self, length, chunk_size): n_passes = (length + chunk_size - 1) // chunk_size chunk_sizes = [*[chunk_size] * (n_passes - 1), (length - 1) % chunk_size + 1] return chunk_sizes def primed_sample( self, n_samples, lyric_and_music_tokens, audio_conditioning=None, metadata_conditioning=None, last_encoder_hidden_states=None, temp=1.0, top_k=0, top_p=0.0, get_preds=False, chunk_size=None, sample_tokens=None, ): if sample_tokens is None: sample_tokens = self.n_ctx # Preprocess. batch_size = lyric_and_music_tokens.shape[0] with torch.no_grad(): lyric_and_music_tokens = lyric_and_music_tokens.view(batch_size, -1).long() sampled_audio = torch.split(lyric_and_music_tokens, 1, dim=1) sampled_audio = list(sampled_audio) if not self.audio_conditioning: audio_conditioning = torch.zeros( (n_samples, 1, self.width), dtype=self.transformer._attn_mods[0].mlp.c_fc.weight.dtype ).to(lyric_and_music_tokens.device) with torch.no_grad(): if get_preds: preds = [] # Fill up key/value cache for past context by runing forward pass. # We do so in chunks instead of doing the whole past in one forward pass to reduce max memory usage. if chunk_size is None: chunk_size = len(sampled_audio) chunk_sizes = self.split_chunks(len(sampled_audio), chunk_size) x_primes = [] start = 0 token = None for current_chunk_size in tqdm(chunk_sizes, desc="Preparing past key value", leave=False): sampled_audio_prime, conds_prime = [], [] for sample_t in range(start, start + current_chunk_size): x_prime, cond_prime = self.get_emb( sample_t, n_samples, token, audio_conditioning, metadata_conditioning ) token = sampled_audio[sample_t] sampled_audio_prime.append(x_prime) conds_prime.append(cond_prime) start = start + current_chunk_size x_prime, cond_prime = torch.cat(sampled_audio_prime, dim=1), torch.cat(conds_prime, dim=1) del sampled_audio_prime del conds_prime if not get_preds: del cond_prime x_prime = self.transformer(x_prime, last_encoder_hidden_states=last_encoder_hidden_states, sample=True) if get_preds: if self.add_cond_after_transformer: x_prime = x_prime + cond_prime del cond_prime x_primes.append(x_prime) else: del x_prime if get_preds: x_prime = torch.cat(x_primes, dim=1) x_prime = self.fc_proj_out(x_prime) # Predictions preds.append(x_prime) # the input of the encoder and decoder can be merged into (lyrics, music tokens) input_tokens = sampled_audio[-1] itererator = tqdm( range(len(sampled_audio), sample_tokens), desc=f"Sampling {len(range(len(sampled_audio), sample_tokens))} music tokens", leave=False, ) for sample_t in itererator: hidden_states, cond = self.get_emb( sample_t, n_samples, input_tokens, audio_conditioning, metadata_conditioning ) hidden_states = self.transformer( hidden_states, last_encoder_hidden_states=last_encoder_hidden_states, sample=True ) if self.add_cond_after_transformer: hidden_states = hidden_states + cond hidden_states = self.fc_proj_out(hidden_states) # Predictions if get_preds: preds.append(hidden_states) # Adjust logits hidden_states = hidden_states / temp hidden_states = filter_logits(hidden_states, top_k=top_k, top_p=top_p) # only music tokens are sampled music_tokens = torch.distributions.Categorical(logits=hidden_states).sample() sampled_audio.append(music_tokens.clone()) input_tokens = music_tokens del input_tokens, music_tokens self.transformer.del_cache() music_tokens = torch.cat(sampled_audio, dim=1) if get_preds: preds = torch.cat(preds, dim=1) if get_preds: return music_tokens, preds else: return music_tokens class JukeboxMusicTokenConditioner(nn.Module): """ The `JukeboxMusicTokenConditioner` takes music tokens as an input (coresponding to the codes of the VQVAE's codebook) and upsamples it using a single layer of decoder convolution block (the same is used in the VQVAE). """ def __init__(self, config, level): super().__init__() self.embed_tokens = nn.Embedding(config.music_vocab_size, config.hidden_size) config.embed_dim = config.music_vocab_size # setting correct argument for the `JukeboxDecoder` self.upsampler = JukeboxDecoderConvBock( config, config.hidden_size, config.res_conv_width, config.res_conv_depth, config.res_downs_t[level], config.res_strides_t[level], reverse_dilation=False, ) self.layer_norm = JukeboxLayerNorm(config.hidden_size) def forward(self, music_tokens, raw_audio_conditionning=None): """ Args: music_tokens (`torch.LongTensor`): Music tokens form the uper level in range(nb_discrete_codes) raw_audio_conditionning (`torch.LongTensor`, *optional*): Audio used when primed sampling, raw audio information that conditions the generation """ if raw_audio_conditionning is None: raw_audio_conditionning = 0.0 # Embed music_tokens music_tokens = music_tokens.long() hidden_states = self.embed_tokens(music_tokens) hidden_states = hidden_states + raw_audio_conditionning # Run conditioner hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.upsampler(hidden_states) hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) return hidden_states class JukeboxRangeEmbedding(nn.Module): """ The `JukeboxRangeEmbedding` interpolate the given [pos_start, pos_end] to obtain an equivalent of time positional embedding of length `n_ctx`. Binning process : For each pos in position tensor, find its bin [start,end) mapped to [0,1,...,bins-1] [start,end) -> [0,1) -> [0, bins) -> floor -> [0,...,bins-1] NOTE: Open ended interval on right, so start <= pos < end, not <= end """ def __init__(self, n_time, embed_dim, range, out_width, clamp=False): super().__init__() self.n_time = n_time self.embed_dim = embed_dim self.emb = nn.Embedding(embed_dim, out_width) self.pos_min, self.pos_max = range self.clamp = clamp def forward(self, pos_start, pos_end=None): # Check if [pos_start,pos_end] in [pos_min, pos_max) if not len(pos_start.shape) == 2: raise TypeError(f"Expected shape with 2 dims, got {pos_start.shape}") if not (self.pos_min <= pos_start).all() and (pos_start < self.pos_max).all(): raise TypeError(f"Range is [{self.pos_min},{self.pos_max}), got {pos_start}") pos_start = pos_start.float() if pos_end is not None: if self.clamp: pos_end = pos_end.clamp(self.pos_min, self.pos_max) pos_end = pos_end.float() # Interpolate so that [pos_start, ..., pos_end] <-> position tensor of length n_ctx n_time = self.n_time if n_time != 1: interpolation = ( torch.arange(0, n_time, dtype=torch.float, device=pos_start.device).view(1, n_time) / n_time ) position = pos_start + (pos_end - pos_start) * interpolation else: position = pos_start # Bin each value to bins_ # [0,1) -> [0,1..,embed_dim) -> [0,1...,embed_dim-1 normalised_position = (position - self.pos_min) / (self.pos_max - self.pos_min) bins_ = (self.embed_dim * normalised_position).floor().long().detach() return self.emb(bins_) class JukeboxLabelConditioner(nn.Module): def __init__(self, config, include_time_signal): super().__init__() embed_dim = config.hidden_size timing_dims = config.timing_dims sampling_rate = config.sampling_rate nb_genres, nb_artists = config.metadata_dims music_tokens_shape = config.n_ctx self.max_nb_genres = config.max_nb_genres self.bow_genre_emb = nn.Embedding(nb_genres, embed_dim) self.artist_emb = nn.Embedding(nb_artists, embed_dim) self.include_time_signal = include_time_signal if self.include_time_signal: total_length_range = (config.min_duration * sampling_rate, config.max_duration * sampling_rate) absolute_pos_range = (0.0, config.max_duration * sampling_rate) relative_pos_range = (0.0, 1.0) self.total_length_emb = JukeboxRangeEmbedding(1, timing_dims, total_length_range, embed_dim) self.absolute_pos_emb = JukeboxRangeEmbedding( music_tokens_shape, timing_dims, absolute_pos_range, embed_dim ) self.relative_pos_emb = JukeboxRangeEmbedding( music_tokens_shape, timing_dims, relative_pos_range, embed_dim, clamp=True ) def forward(self, metadata): total_length = metadata[:, 0:1] offset = metadata[:, 1:2] length = metadata[:, 2:3] artist = metadata[:, 3:4] genre = metadata[:, 4:] # Start embedding of length 1 artist_emb = self.artist_emb(artist) # Empty genre slots are denoted by -1. We mask these out. mask = (genre >= 0).float().unsqueeze(2) genre_emb = (self.bow_genre_emb(genre.clamp(0)) * mask).sum(dim=1, keepdim=True) start_emb = genre_emb + artist_emb # Pos embedding of length n_ctx if self.include_time_signal: start, end = offset, offset + length total_length = total_length.float() start = start.float() end = end.float() pos_emb = ( self.total_length_emb(total_length) + self.absolute_pos_emb(start, end) + self.relative_pos_emb(start / total_length, end / total_length) ) else: pos_emb = None return start_emb, pos_emb class JukeboxPrior(PreTrainedModel): """ The JukeboxPrior class, which is a wrapper around the various conditioning and the transformer. JukeboxPrior can be seen as language models trained on music. They model the next `music token` prediction task. If a (lyric) `encoderĂ¹ is defined, it also models the `next character` prediction on the lyrics. Can be conditionned on timing, artist, genre, lyrics and codes from lower-levels Priors. Args: config (`JukeboxPriorConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. level (`int`, *optional*): Current level of the Prior. Should be in range `[0,nb_priors]`. nb_priors (`int`, *optional*, defaults to 3): Total number of priors. vqvae_encoder (`Callable`, *optional*): Encoding method of the VQVAE encoder used in the forward pass of the model. Passing functions instead of the vqvae module to avoid getting the parameters. vqvae_decoder (`Callable`, *optional*): Decoding method of the VQVAE decoder used in the forward pass of the model. Passing functions instead of the vqvae module to avoid getting the parameters. """ config_class = JukeboxPriorConfig def _init_weights(self, module): init_scale = self.config.init_scale if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02 * init_scale) elif isinstance(module, JukeboxConv1D): if self.config.zero_out: module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=0.02 * init_scale) elif isinstance(module, JukeboxPositionalEmbedding): module.pos_emb.data.normal_(mean=0.0, std=0.01 * init_scale) elif isinstance(module, JukeboxRangeEmbedding): module.emb.weight.data.normal_(mean=0.0, std=0.01 * init_scale) elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "lm_head"): module.lm_head.weight.data.normal_(mean=0.0, std=0.02 * init_scale) elif isinstance(module, JukeboxConditionalAutoregressive) and hasattr(module, "start_token"): module.start_token.data.normal_(mean=0.0, std=0.01 * init_scale) elif isinstance(module, JukeboxResConv1DBlock) and self.config.zero_out: module.conv1d_2.weigth.data.zero_() module.conv1d_2.bias.data.zero_() if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def __init__(self, config: JukeboxPriorConfig, level=None, nb_priors=3, vqvae_encoder=None, vqvae_decoder=None): super().__init__(config) # Passing functions instead of the vqvae module to avoid getting params, only used in the # forward loop self.vqvae_encoder = vqvae_encoder self.vqvae_decoder = vqvae_decoder self.levels = nb_priors self.level = level if level is not None else config.level self.base_model_prefix = f"priors.{self.level}" self.n_ctx = config.n_ctx self.lyric_conditioning = config.nb_relevant_lyric_tokens > 0 self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens self.encoder_loss_fraction = config.encoder_loss_fraction # Audio conditioning : conditioning on music tokens (either from audio or from previous levels or both) self.audio_conditioning = self.level != 0 self.cond_level = self.level - 1 if self.audio_conditioning: self.conditioner_blocks = JukeboxMusicTokenConditioner(config, self.level) # metadata conditioning : contioning on timing, genres, and artist self.metadata_conditioning = config.metadata_conditioning if self.metadata_conditioning: self.metadata_embedding = JukeboxLabelConditioner(config, include_time_signal=not self.audio_conditioning) # define encoder-decoder or encoder and decoder self.is_encoder_decoder = config.is_encoder_decoder if config.is_encoder_decoder: # encoder-decoder transformer self.input_shapes = [config.nb_relevant_lyric_tokens, config.n_ctx] self.embed_dim_shift = [0, config.lyric_vocab_size] self.width = config.hidden_size self.nb_relevant_lyric_tokens = config.nb_relevant_lyric_tokens self.prior = JukeboxConditionalAutoregressive( config, n_ctx=config.nb_relevant_lyric_tokens + config.n_ctx, embed_dim=config.lyric_vocab_size + config.music_vocab_size, audio_conditioning=(self.audio_conditioning or self.metadata_conditioning), metadata_conditioning=True, ) else: # Separate encoder-decoder transformer encoder_config = config.encoder_config if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning: self.lyric_acts_width = encoder_config.hidden_size self.encoder_width = config.hidden_size self.encoder_dim = config.lyric_vocab_size self.encoder = JukeboxConditionalAutoregressive( encoder_config, n_ctx=self.nb_relevant_lyric_tokens, embed_dim=self.encoder_dim, audio_conditioning=False, metadata_conditioning=False, is_encoder=True, ) self.encoder.proj_in = JukeboxConv1D(encoder_config.hidden_size, config.hidden_size) self.encoder.final_layer_norm = JukeboxLayerNorm(config.hidden_size) self.encoder.lm_head = nn.Linear(config.hidden_size, config.lyric_vocab_size, bias=False) else: self.nb_relevant_lyric_tokens = 0 # decoder model on the tokens self.prior = JukeboxConditionalAutoregressive( config, audio_conditioning=(self.audio_conditioning or self.metadata_conditioning), metadata_conditioning=self.metadata_conditioning, ) self.next_token_prediction_loss_dims = config.n_ctx self.total_loss_dims = self.nb_relevant_lyric_tokens + self.next_token_prediction_loss_dims self.downsamples = [stride**down for stride, down in zip(config.res_strides_t, config.res_downs_t)] self.cond_downsample = self.downsamples[self.level] if self.level != 0 else None self.raw_to_tokens = np.prod(self.downsamples[: nb_priors - self.level]) self.sample_length = self.n_ctx * self.raw_to_tokens logger.info( f"Level:{self.level}, Cond downsample:{self.cond_downsample}, Raw to tokens:{self.raw_to_tokens}, Sample" f" length:{self.sample_length}" ) def get_metadata(self, labels, start, total_length, offset, get_indices=False): metadata = labels.clone() metadata[:, 0] = total_length # Set sample_length to match this level metadata[:, 2] = int(self.sample_length) # Set offset metadata[:, 1:2] = int(offset * self.raw_to_tokens) + int(start * self.raw_to_tokens) # here since metadata has the full token_list, we just need to selected the ones that are relevant # Set lyric tokens metadata, indices = self.set_metadata_lyric_tokens(metadata) if get_indices: return metadata, indices else: return metadata def set_metadata_lyric_tokens(self, labels): """ Processes the full labels to only retreive the relevant lyric tokens and keep the metadata conditioning tokens. """ if self.nb_relevant_lyric_tokens > 0: tokens_list = torch.zeros( (labels.shape[0], self.nb_relevant_lyric_tokens), dtype=torch.long, device=labels.device ) indices_list = [] # whats the index of each current character in original array for idx in range(labels.shape[0]): full_tokens = labels.clone()[:, 4 + self.metadata_embedding.max_nb_genres :] total_length, offset, duration = labels[idx, 0], labels[idx, 1], labels[idx, 2] tokens, indices = get_relevant_lyric_tokens( full_tokens, self.nb_relevant_lyric_tokens, total_length, offset, duration ) tokens_list[idx, :] = tokens indices_list.append(indices) return ( torch.cat((labels[:, : 4 + self.metadata_embedding.max_nb_genres], tokens_list), dim=-1), indices_list, ) else: return labels, None def get_music_tokens_conds(self, music_tokens, start, end): """ Extracts current level's conditioning music tokens. """ if self.level != 0: music_tokens_cond = music_tokens[self.level - 1] music_tokens = music_tokens_cond[:, start // self.cond_downsample : end // self.cond_downsample] missing_cond_len = self.n_ctx // self.cond_downsample - music_tokens_cond[-1].shape[-1] if missing_cond_len > 0: init_cond = torch.zeros(1, missing_cond_len).to(music_tokens_cond.device) music_tokens_cond = torch.cat((music_tokens_cond, init_cond), dim=-1).long() music_tokens_conds = [music_tokens_cond] else: music_tokens_conds = None return music_tokens_conds def prior_preprocess(self, tokens, conds): """ Shifts the input tokens to account for the dictionary merge. The embed_dim_shift give by how much the music tokens should be shifted by. It is equal to `lyric_vocab_size`. """ batch_size = tokens[0].shape[0] for i in range(len(tokens)): tokens[i] = (tokens[i] + int(self.embed_dim_shift[i])).view(batch_size, -1) for i in range(len(conds)): if conds[i] is None: conds[i] = torch.zeros( (batch_size, self.input_shapes[i], self.width), dtype=tokens[0].dtype, device=tokens[0].device ) return torch.cat(tokens, dim=1), torch.cat(conds, dim=1) def prior_postprocess(self, tokens): """ Shifts back the input tokens if the model uses an encoder decoder architecture. As the embedding layer is shared, `prior_embed_dim_shift` shifts the music token ids by `lyric_vocab_size`. Only returns the music tokens. """ batch_size = tokens.shape[0] dims = (self.input_shapes[0], tokens.shape[1] - self.input_shapes[0]) tokens = list(torch.split(tokens, dims, dim=1)) # Some of the input tokens might be shifted to take into account the voccabulary fusion for i in range(len(tokens)): bins_shift = int(self.embed_dim_shift[i]) tokens[i] = (tokens[i] - bins_shift).view(batch_size, -1) tokens[i] = torch.clamp(tokens[i], min=0) # If not masking loss, model may have generated lyric/midi tokens which are now shifted <0 by bin_shift return tokens[-1] def embed_tokens(self, music_tokens_conds): """ Embeds the upper level music tokens and upsamples them to provide as audio conditioning. """ music_tokens_conds = music_tokens_conds[: self.cond_level + 1] audio_conditioning = None for music_tokens_cond, conditioner_block in reversed(list(zip(music_tokens_conds, [self.conditioner_blocks]))): audio_conditioning = conditioner_block(music_tokens_cond, audio_conditioning) return audio_conditioning def encode(self, hidden_states, start_level=None, end_level=None, bs_chunks=1): """ Encodes the hidden states (raw audio) using the VQVAE's encoder. Returns latent_states. """ if start_level is None: start_level = self.level if end_level is None: end_level = self.levels # Get latents with torch.no_grad(): latent_states = self.vqvae_encoder( hidden_states, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks ) return latent_states def decode(self, music_tokens, start_level=None, end_level=None, bs_chunks=1): """ Usamples the sequence of codebook vectors to a raw audio. """ if start_level is None: start_level = self.level if end_level is None: end_level = self.levels with torch.no_grad(): output = self.vqvae_decoder( music_tokens, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks ) return output def get_cond(self, music_tokens_conds, metadata): """ Converts the input tokens to input_embeddings. Splits the lyrics form the rest of the metadata. Lyric tokens can be None. """ if metadata is not None: n_labels = metadata.shape[1] - self.nb_relevant_lyric_tokens metadata, lyric_tokens = metadata[:, :n_labels], metadata[:, n_labels:] else: metadata, lyric_tokens = None, None metadata_conditioning, metadata_pos = ( self.metadata_embedding(metadata) if self.metadata_conditioning else (None, None) ) audio_conditioning = self.embed_tokens(music_tokens_conds) if self.audio_conditioning else metadata_pos return audio_conditioning, metadata_conditioning, lyric_tokens def sample( self, n_samples, music_tokens=None, music_tokens_conds=None, metadata=None, temp=1.0, top_k=0, top_p=0.0, chunk_size=None, sample_tokens=None, ): """ Ancestral/Prime sampling a window of tokens using the provided conditioning and metadatas. Args: n_samples (`int`): Number of samples to generate. music_tokens (`List[torch.LongTensor]`, *optional*): Previously gemerated tokens at the current level. Used as context for the generation. music_tokens_conds (`List[torch.FloatTensor]`, *optional*): Upper-level music tokens generated by the previous prior model. Is `None` if the generation is not conditionned on the upper-level tokens. metadata (`List[torch.LongTensor]`, *optional*): List containing the metatdata tensor with the artist, genre and the lyric tokens. temp (`float`, *optional*, defaults to 1.0): Sampling temperature. top_k (`int`, *optional*, defaults to 0): Top k probabilities used for filtering. top_p (`float`, *optional*, defaults to 0.0): Top p probabilities used for filtering. chunk_size (`int`, *optional*): Size of the chunks used to prepare the cache of the transformer. sample_tokens (`int`, *optional*): Number of tokens to sample. """ no_past_context = music_tokens is None or music_tokens.shape[1] == 0 name = {True: "Ancestral", False: "Primed"}[no_past_context] logger.info(f"{name} sampling {n_samples} samples with temp={temp}, top_k={top_k}, top_p={top_p}") with torch.no_grad(): # Currently audio_conditioning only uses immediately above layer audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata) if self.is_encoder_decoder: if no_past_context: # the prime_sample function will be used with music_tokens set to None lyric_and_music_tokens, audio_conditioning = self.prior_preprocess( [lyric_tokens], [None, audio_conditioning] ) else: lyric_and_music_tokens, audio_conditioning = self.prior_preprocess( [lyric_tokens, music_tokens], [None, audio_conditioning] ) if sample_tokens is not None: sample_tokens += self.nb_relevant_lyric_tokens music_tokens = self.prior.primed_sample( n_samples, lyric_and_music_tokens, audio_conditioning, metadata_conditioning, temp=temp, top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens, ) music_tokens = self.prior_postprocess(music_tokens) else: last_encoder_hidden_states = self.get_encoder_states(lyric_tokens, sample=True) if no_past_context: music_tokens = self.prior.sample( n_samples, audio_conditioning, metadata_conditioning, last_encoder_hidden_states, temp=temp, top_k=top_k, top_p=top_p, sample_tokens=sample_tokens, ) else: music_tokens = self.prior.primed_sample( n_samples, music_tokens, audio_conditioning, metadata_conditioning, last_encoder_hidden_states, temp=temp, top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens, ) return music_tokens def get_encoder_states(self, lyric_tokens, sample=False): """ Retreive the last hidden_states of the lyric encoder that will be attended to by the decoder. Forwards through the lyric encoder. """ if self.nb_relevant_lyric_tokens != 0 and self.lyric_conditioning: if sample: self.encoder = self.encoder.to(lyric_tokens.device) lyric_acts = self.encoder(lyric_tokens, None, None, None) lyric_acts = self.encoder.proj_in(lyric_acts) last_encoder_hidden_states = self.encoder.final_layer_norm(lyric_acts) else: last_encoder_hidden_states = None return last_encoder_hidden_states def get_encoder_loss(self, last_encoder_hidden_states, target_lyrics): """ Computes the loss for the lyric encoder: next lyric token prediction. """ if self.lyric_conditioning: last_encoder_hidden_states = self.encoder.lm_head(last_encoder_hidden_states) encoder_loss = nn.functional.cross_entropy( last_encoder_hidden_states.view(-1, self.encoder_dim), target_lyrics.view(-1) ) / np.log(2.0) else: encoder_loss = torch.tensor(0.0, device=last_encoder_hidden_states.device) return encoder_loss def forward_tokens( self, music_tokens, music_tokens_conds=[], metadata=None, get_preds=False, get_attn_weights=False ): """ Applies a forward pass using the conditioning tokens. Different from the classic forward as it does not use the vqvae's encoding layers. """ if get_attn_weights: self.prior.transformer.set_record_attn(get_attn_weights) audio_conditioning, metadata_conditioning, lyric_tokens = self.get_cond(music_tokens_conds, metadata) if self.is_encoder_decoder: # the preprocess returns the full tokens (Lyrics and Music tokens), shifted tokens, audio_conditioning = self.prior_preprocess( [lyric_tokens, music_tokens], [None, audio_conditioning] ) (encoder_loss, next_token_prediction_loss), preds = self.prior( tokens, audio_conditioning, metadata_conditioning, get_sep_loss=True, get_preds=get_preds ) else: last_encoder_hidden_states = self.get_encoder_states(lyric_tokens) encoder_loss = self.get_encoder_loss(last_encoder_hidden_states, lyric_tokens) next_token_prediction_loss, preds = self.prior( music_tokens, audio_conditioning, metadata_conditioning, last_encoder_hidden_states, get_preds=get_preds, ) loss = self.encoder_loss_fraction * encoder_loss * self.nb_relevant_lyric_tokens / self.total_loss_dims loss += next_token_prediction_loss * self.next_token_prediction_loss_dims / self.total_loss_dims metrics = { "bpd": next_token_prediction_loss.clone().detach(), "encoder_loss": encoder_loss.clone().detach(), "next_token_prediction_loss": next_token_prediction_loss.clone().detach(), } if get_preds: metrics["preds"] = preds.clone().detach() if get_attn_weights: saved_attn_weights = self.prior.transformer.saved_attn_weights self.prior.transformer.set_record_attn(False) return saved_attn_weights else: return loss, metrics def forward( self, hidden_states: torch.Tensor, metadata: Optional[List[torch.LongTensor]], decode: Optional[bool] = False, get_preds: Optional[bool] = False, ) -> List[torch.Tensor]: """ Encode the hidden states using the `vqvae` encoder, and then predicts the next token in the `forward_tokens` function. The loss is the sum of the `encoder` loss and the `decoder` loss. Args: hidden_states (`torch.Tensor`): Hidden states which should be raw audio metadata (`List[torch.LongTensor]`, *optional*): List containing the metadata conditioning tensorwith the lyric and the metadata tokens. decode (`bool`, *optional*, defaults to `False`): Whether or not to decode the encoded to tokens. get_preds (`bool`, *optional*, defaults to `False`): Whether or not to return the actual predicitons of the model. """ batch_size = hidden_states.shape[0] music_tokens, *music_tokens_conds = self.encode(hidden_states, bs_chunks=batch_size) loss, metrics = self.forward_tokens( music_tokens=music_tokens, music_tokens_conds=music_tokens_conds, metadata=metadata, get_preds=get_preds, ) if decode: dequantised_states = self.decode([music_tokens, *music_tokens_conds]) else: dequantised_states = None return dequantised_states, loss, metrics class JukeboxPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = JukeboxConfig base_model_prefix = "jukebox" supports_gradient_checkpointing = False def _init_weights(self, module): if isinstance(module, JukeboxPrior) or isinstance(module, JukeboxVQVAE): module.apply(module._init_weights) def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) JUKEBOX_SAMPLING_INPUT_DOCSTRING = r""" labels (`List[torch.LongTensor]` of length `n_sample`, and shape `(self.levels, self.config.max_nb_genre + lyric_sequence_length)` : List of metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to condition the generation. sampling_kwargs (`Dict[Any]`): Various additional sampling arguments that are used by the `_sample` function. A detail list of the arguments can bee seen in the [`_sample`] function documentation. """ @add_start_docstrings( """The bare JUKEBOX Model used for music generation. 4 sampling techniques are supported : `primed_sample`, `upsample`, `continue_sample` and `ancestral_sample`. It does not have a `forward` method as the training is not end to end. If you want to fine-tune the model, it is recommended to use the `JukeboxPrior` class and train each prior individually. """, JUKEBOX_START_DOCSTRING, ) class JukeboxModel(JukeboxPreTrainedModel): _no_split_modules = ["JukeboxBlock"] def __init__(self, config): super().__init__(config) vqvae_config = config.vqvae_config self.vqvae = JukeboxVQVAE(vqvae_config) self.set_shared_params(config) self.priors = nn.ModuleList( [JukeboxPrior(config.prior_configs[level], level) for level in range(config.nb_priors)] ) def set_shared_params(self, model_config): """ Initialises the parameters that are shared. This has to be done here because the list of `JukeboxPriorConfig` is nest, and is thus unreachable in the `from_dict` function """ for config in model_config.prior_configs: config.sampling_rate = model_config.sampling_rate config.timing_dims = model_config.timing_dims config.min_duration = model_config.min_duration config.max_duration = model_config.max_duration config.max_nb_genres = model_config.max_nb_genres config.metadata_conditioning = model_config.metadata_conditioning def decode(self, music_tokens, start_level=0, end_level=None, bs_chunks=1): return self.vqvae.decode(music_tokens, start_level, end_level, bs_chunks) def encode(self, input_audio, start_level=0, end_level=None, bs_chunks=1): return self.vqvae.encode(input_audio, start_level, end_level, bs_chunks) def split_batch(self, obj, n_samples, split_size): n_passes = (n_samples + split_size - 1) // split_size if isinstance(obj, torch.Tensor): return torch.split(obj, split_size, dim=0) elif isinstance(obj, list): return list(zip(*[torch.split(item, split_size, dim=0) for item in obj])) elif obj is None: return [None] * n_passes else: raise TypeError("Unknown input type") # Sample a partial window of length= self.priors[level].n_ctx: iterator = get_starts(total_length, self.priors[level].n_ctx, hop_length) for start in iterator: music_tokens = self.sample_single_window( music_tokens, labels, offset, sampling_kwargs, level, start, max_batch_size ) else: music_tokens = self.sample_partial_window( music_tokens, labels, offset, sampling_kwargs, level, total_length, max_batch_size ) return music_tokens @torch.no_grad() def _sample( self, music_tokens, labels, sample_levels, metas=None, chunk_size=32, sampling_temperature=0.98, lower_batch_size=16, max_batch_size=16, sample_length_in_seconds=24, compute_alignments=False, sample_tokens=None, offset=0, save_results=True, sample_length=None, ) -> List[torch.LongTensor]: """ Core sampling function used to generate music tokens. Iterates over the provided list of levels, while saving the generated raw audio at each step. Args: music_tokens (`List[torch.LongTensor]`): A sequence of music tokens of length `self.levels` which will be used as context to continue the sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain level. labels (`List[torch.LongTensor]`): List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre + lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to condition the generation. sample_levels (`List[int]`): List of the desired levels at which the sampling will be done. A level is equivalent to the index of the prior in the list of priors metas (`List[Any]`, *optional*): Metadatas used to generate the `labels` chunk_size (`int`, *optional*, defaults to 32): Size of a chunk of audio, used to fill up the memory in chuncks to prevent OOM erros. Bigger chunks means faster memory filling but more consumption. sampling_temperature (`float`, *optional*, defaults to 0.98): Temperature used to ajust the randomness of the sampling. lower_batch_size (`int`, *optional*, defaults to 16): Maximum batch size for the lower level priors max_batch_size (`int`, *optional*, defaults to 16): Maximum batch size for the top level priors sample_length_in_seconds (`int`, *optional*, defaults to 24): Desired length of the generation in seconds compute_alignments (`bool`, *optional*, defaults to `False`): Whether or not to compute the alignment between the lyrics and the audio using the top_prior sample_tokens (`int`, *optional*): Precise number of tokens that should be sampled at each level. This is mostly useful for running dummy experiments offset (`int`, *optional*, defaults to 0): Audio offset used as conditioning, corresponds to the starting sample in the music. If the offset is greater than 0, the lyrics will be shifted take that intoaccount save_results (`bool`, *optional*, defaults to `True`): Whether or not to save the intermediate results. If `True`, will generate a folder named with the start time. sample_length (`int`, *optional*): Desired length of the generation in samples. Returns: torch.Tensor Example: ```python >>> from transformers import AutoTokenizer, JukeboxModel, set_seed >>> import torch >>> metas = dict(artist="Zac Brown Band", genres="Country", lyrics="I met a traveller from an antique land") >>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics") >>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval() >>> labels = tokenizer(**metas)["input_ids"] >>> set_seed(0) >>> zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)] >>> zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False) >>> zs[0] tensor([[1853, 1369, 1150, 1869, 1379, 1789, 519, 710, 1306, 1100, 1229, 519, 353, 1306, 1379, 1053, 519, 653, 1631, 1467, 1229, 1229, 10, 1647, 1254, 1229, 1306, 1528, 1789, 216, 1631, 1434, 653, 475, 1150, 1528, 1804, 541, 1804, 1434]]) ``` """ top_prior = self.priors[0] if sample_length is not None: total_length = sample_length else: total_length = ( int(sample_length_in_seconds * self.config.sampling_rate) // top_prior.raw_to_tokens ) * top_prior.raw_to_tokens if sample_levels is None: sample_levels = range(len(self.priors)) # total length of the signal, might be bit different from the actual generated length self.total_length = total_length for level in sample_levels: sampling_kwargs = { "temp": 0.99 if level == len(self.priors) - 1 else sampling_temperature, "chunk_size": chunk_size, "sample_tokens": sample_tokens, } # Set correct total_length, hop_length, labels and sampling_kwargs for level total_token_to_sample = total_length // self.priors[level].raw_to_tokens hop_length = int(self.config.hop_fraction[level] * self.priors[level].n_ctx) max_batch_size = lower_batch_size if level != sample_levels else max_batch_size music_tokens = self.sample_level( music_tokens, labels[level], offset, sampling_kwargs, level, total_token_to_sample, hop_length, max_batch_size, ) if save_results: self.vqvae.to(music_tokens[level].device) # Decode sample with torch.no_grad(): start_level = len(self.priors) - level - 1 # vqvae levels are reversed raw_audio = self.vqvae.decode( music_tokens[: level + 1], start_level=start_level, bs_chunks=music_tokens[level].shape[0] ) logdir = f"jukebox/level_{level}" if not os.path.exists(logdir): os.makedirs(logdir) save_temp_audio(logdir, level, metas=metas, aud=raw_audio.float()) if compute_alignments and self.priors[0] is not None and self.priors[0].nb_relevant_lyric_tokens > 0: with torch.no_grad(): alignments = get_alignment(music_tokens, labels[0], self.priors[0], self.config) torch.save({"alignments": alignments}, f"{logdir}/lyric_alignments.pt") return music_tokens @add_start_docstrings( """ Generates music tokens based on the provided `labels. Will start at the desired prior level and automatically upsample the sequence. If you want to create the audio, you should call `model.decode(tokens)`, which will use the VQ-VAE decoder to convert the music tokens to raw audio. Args: labels (`List[torch.LongTensor]`) : List of length `n_sample`, and shape `(self.levels, 4 + self.config.max_nb_genre + lyric_sequence_length)` metadata such as `artist_id`, `genre_id` and the full list of lyric tokens which are used to condition the generation. n_samples (`int`, *optional*, default to 1) : Number of samples to be generated in parallel. """, ) def ancestral_sample(self, labels, n_samples=1, **sampling_kwargs) -> List[torch.LongTensor]: """ Example: ```python >>> from transformers import AutoTokenizer, JukeboxModel, set_seed >>> model = JukeboxModel.from_pretrained("openai/jukebox-1b-lyrics", min_duration=0).eval() >>> tokenizer = AutoTokenizer.from_pretrained("openai/jukebox-1b-lyrics") >>> lyrics = "Hey, are you awake? Can you talk to me?" >>> artist = "Zac Brown Band" >>> genre = "Country" >>> metas = tokenizer(artist=artist, genres=genre, lyrics=lyrics) >>> set_seed(0) >>> music_tokens = model.ancestral_sample(metas.input_ids, sample_length=400) >>> with torch.no_grad(): ... model.decode(music_tokens)[:, :10].squeeze(-1) tensor([[-0.0219, -0.0679, -0.1050, -0.1203, -0.1271, -0.0936, -0.0396, -0.0405, -0.0818, -0.0697]]) ``` """ sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors)))) music_tokens = [ torch.zeros(n_samples, 0, dtype=torch.long, device=labels[0].device) for _ in range(len(self.priors)) ] music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens @add_start_docstrings( """Generates a continuation of the previously generated tokens. Args: music_tokens (`List[torch.LongTensor]` of length `self.levels` ) : A sequence of music tokens which will be used as context to continue the sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain level. """, JUKEBOX_SAMPLING_INPUT_DOCSTRING, ) def continue_sample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]: sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors)))) music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens @add_start_docstrings( """Upsamples a sequence of music tokens using the prior at level `level`. Args: music_tokens (`List[torch.LongTensor]` of length `self.levels` ) : A sequence of music tokens which will be used as context to continue the sampling process. Should have `self.levels` tensors, each corresponding to the generation at a certain level. """, JUKEBOX_SAMPLING_INPUT_DOCSTRING, ) def upsample(self, music_tokens, labels, **sampling_kwargs) -> List[torch.LongTensor]: sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors) - 1))) music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens @add_start_docstrings( """Generate a raw audio conditioned on the provided `raw_audio` which is used as conditioning at each of the generation levels. The audio is encoded to music tokens using the 3 levels of the VQ-VAE. These tokens are used: as conditioning for each level, which means that no ancestral sampling is required. Args: raw_audio (`List[torch.Tensor]` of length `n_samples` ) : A list of raw audio that will be used as conditioning information for each samples that will be generated. """, JUKEBOX_SAMPLING_INPUT_DOCSTRING, ) def primed_sample(self, raw_audio, labels, **sampling_kwargs) -> List[torch.LongTensor]: sample_levels = sampling_kwargs.pop("sample_levels", list(range(len(self.priors)))) self.vqvae.to(raw_audio.device).float() with torch.no_grad(): music_tokens = self.vqvae.encode( raw_audio, start_level=0, end_level=len(self.priors), bs_chunks=raw_audio.shape[0] ) music_tokens = self._sample(music_tokens, labels, sample_levels, **sampling_kwargs) return music_tokens