# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pix2Struct model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class Pix2StructTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50244): Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Dimensionality of the key, query, value projections in each attention head. d_ff (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. layer_norm_epsilon (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string). decoder_start_token_id (`int`, *optional*, defaults to 0): The id of the `decoder_start_token_id` token. use_cache (`bool`, *optional*, defaults to `False`): Whether or not the model should return the last key/values attentions (not used by all models). pad_token_id (`int`, *optional*, defaults to 0): The id of the `padding` token. eos_token_id (`int`, *optional*, defaults to 1): The id of the `end-of-sequence` token. Example: ```python >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration >>> configuration = Pix2StructTextConfig() >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration >>> model = Pix2StructTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pix2struct_text_model" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, vocab_size=50244, hidden_size=768, d_kv=64, d_ff=2048, num_layers=12, num_heads=12, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, dense_act_fn="gelu_new", decoder_start_token_id=0, use_cache=False, pad_token_id=0, eos_token_id=1, tie_word_embeddings=False, is_decoder=True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.use_cache = use_cache self.eos_token_id = eos_token_id self.decoder_start_token_id = decoder_start_token_id # for backwards compatibility self.dense_act_fn = dense_act_fn super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, tie_word_embeddings=tie_word_embeddings, is_decoder=is_decoder, **kwargs, ) @classmethod def from_pretrained( cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type") == "pix2struct": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class Pix2StructVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. patch_embed_hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the input patch_embedding layer in the Transformer encoder. d_ff (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. d_kv (`int`, *optional*, defaults to 64): Dimensionality of the key, query, value projections per attention head. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). seq_len (`int`, *optional*, defaults to 4096): Maximum sequence length (here number of patches) supported by the model. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance (in tokens) to use for each attention layer. Example: ```python >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration >>> configuration = Pix2StructVisionConfig() >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration >>> model = Pix2StructVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pix2struct_vision_model" def __init__( self, hidden_size=768, patch_embed_hidden_size=768, d_ff=2048, d_kv=64, num_hidden_layers=12, num_attention_heads=12, dense_act_fn="gelu_new", layer_norm_eps=1e-6, dropout_rate=0.0, attention_dropout=0.0, initializer_range=1e-10, initializer_factor=1.0, seq_len=4096, relative_attention_num_buckets=32, relative_attention_max_distance=128, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.patch_embed_hidden_size = patch_embed_hidden_size self.d_ff = d_ff self.dropout_rate = dropout_rate self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.dense_act_fn = dense_act_fn self.seq_len = seq_len self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.d_kv = d_kv @classmethod def from_pretrained( cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type") == "pix2struct": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class Pix2StructConfig(PretrainedConfig): r""" [`Pix2StructConfig`] is the configuration class to store the configuration of a [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pix2Struct-base [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Pix2StructTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`]. initializer_factor (`float`, *optional*, defaults to 1.0): Factor to multiply the initialization range with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. is_vqa (`bool`, *optional*, defaults to `False`): Whether the model has been fine-tuned for VQA or not. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration >>> configuration = Pix2StructConfig() >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration >>> model = Pix2StructForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration >>> config_text = Pix2StructTextConfig() >>> config_vision = Pix2StructVisionConfig() >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "pix2struct" def __init__( self, text_config=None, vision_config=None, initializer_factor=1.0, initializer_range=0.02, is_vqa=False, tie_word_embeddings=False, is_encoder_decoder=True, **kwargs, ): super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.") if vision_config is None: vision_config = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.") self.text_config = Pix2StructTextConfig(**text_config) self.vision_config = Pix2StructVisionConfig(**vision_config) self.decoder_start_token_id = self.text_config.decoder_start_token_id self.pad_token_id = self.text_config.pad_token_id self.eos_token_id = self.text_config.eos_token_id self.initializer_factor = initializer_factor self.initializer_range = initializer_range self.text_config.initializer_range = self.initializer_range self.vision_config.initializer_range = self.initializer_range self.is_vqa = is_vqa @classmethod def from_text_vision_configs( cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs ): r""" Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct vision model configuration. Returns: [`Pix2StructConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)