#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.util import json import os import time from dataclasses import dataclass from typing import Dict import requests from huggingface_hub import HfFolder, hf_hub_download, list_spaces from ..models.auto import AutoTokenizer from ..utils import is_offline_mode, is_openai_available, is_torch_available, logging from .base import TASK_MAPPING, TOOL_CONFIG_FILE, Tool, load_tool, supports_remote from .prompts import CHAT_MESSAGE_PROMPT, download_prompt from .python_interpreter import evaluate logger = logging.get_logger(__name__) if is_openai_available(): import openai if is_torch_available(): from ..generation import StoppingCriteria, StoppingCriteriaList from ..models.auto import AutoModelForCausalLM else: StoppingCriteria = object _tools_are_initialized = False BASE_PYTHON_TOOLS = { "print": print, "range": range, "float": float, "int": int, "bool": bool, "str": str, } @dataclass class PreTool: task: str description: str repo_id: str HUGGINGFACE_DEFAULT_TOOLS = {} HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [ "image-transformation", "text-download", "text-to-image", "text-to-video", ] def get_remote_tools(organization="huggingface-tools"): if is_offline_mode(): logger.info("You are in offline mode, so remote tools are not available.") return {} spaces = list_spaces(author=organization) tools = {} for space_info in spaces: repo_id = space_info.id resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space") with open(resolved_config_file, encoding="utf-8") as reader: config = json.load(reader) task = repo_id.split("/")[-1] tools[config["name"]] = PreTool(task=task, description=config["description"], repo_id=repo_id) return tools def _setup_default_tools(): global HUGGINGFACE_DEFAULT_TOOLS global _tools_are_initialized if _tools_are_initialized: return main_module = importlib.import_module("transformers") tools_module = main_module.tools remote_tools = get_remote_tools() for task_name, tool_class_name in TASK_MAPPING.items(): tool_class = getattr(tools_module, tool_class_name) description = tool_class.description HUGGINGFACE_DEFAULT_TOOLS[tool_class.name] = PreTool(task=task_name, description=description, repo_id=None) if not is_offline_mode(): for task_name in HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB: found = False for tool_name, tool in remote_tools.items(): if tool.task == task_name: HUGGINGFACE_DEFAULT_TOOLS[tool_name] = tool found = True break if not found: raise ValueError(f"{task_name} is not implemented on the Hub.") _tools_are_initialized = True def resolve_tools(code, toolbox, remote=False, cached_tools=None): if cached_tools is None: resolved_tools = BASE_PYTHON_TOOLS.copy() else: resolved_tools = cached_tools for name, tool in toolbox.items(): if name not in code or name in resolved_tools: continue if isinstance(tool, Tool): resolved_tools[name] = tool else: task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id _remote = remote and supports_remote(task_or_repo_id) resolved_tools[name] = load_tool(task_or_repo_id, remote=_remote) return resolved_tools def get_tool_creation_code(code, toolbox, remote=False): code_lines = ["from transformers import load_tool", ""] for name, tool in toolbox.items(): if name not in code or isinstance(tool, Tool): continue task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id line = f'{name} = load_tool("{task_or_repo_id}"' if remote: line += ", remote=True" line += ")" code_lines.append(line) return "\n".join(code_lines) + "\n" def clean_code_for_chat(result): lines = result.split("\n") idx = 0 while idx < len(lines) and not lines[idx].lstrip().startswith("```"): idx += 1 explanation = "\n".join(lines[:idx]).strip() if idx == len(lines): return explanation, None idx += 1 start_idx = idx while not lines[idx].lstrip().startswith("```"): idx += 1 code = "\n".join(lines[start_idx:idx]).strip() return explanation, code def clean_code_for_run(result): result = f"I will use the following {result}" explanation, code = result.split("Answer:") explanation = explanation.strip() code = code.strip() code_lines = code.split("\n") if code_lines[0] in ["```", "```py", "```python"]: code_lines = code_lines[1:] if code_lines[-1] == "```": code_lines = code_lines[:-1] code = "\n".join(code_lines) return explanation, code class Agent: """ Base class for all agents which contains the main API methods. Args: chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. """ def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): _setup_default_tools() agent_name = self.__class__.__name__ self.chat_prompt_template = download_prompt(chat_prompt_template, agent_name, mode="chat") self.run_prompt_template = download_prompt(run_prompt_template, agent_name, mode="run") self._toolbox = HUGGINGFACE_DEFAULT_TOOLS.copy() self.log = print if additional_tools is not None: if isinstance(additional_tools, (list, tuple)): additional_tools = {t.name: t for t in additional_tools} elif not isinstance(additional_tools, dict): additional_tools = {additional_tools.name: additional_tools} replacements = {name: tool for name, tool in additional_tools.items() if name in HUGGINGFACE_DEFAULT_TOOLS} self._toolbox.update(additional_tools) if len(replacements) > 1: names = "\n".join([f"- {n}: {t}" for n, t in replacements.items()]) logger.warning( f"The following tools have been replaced by the ones provided in `additional_tools`:\n{names}." ) elif len(replacements) == 1: name = list(replacements.keys())[0] logger.warning(f"{name} has been replaced by {replacements[name]} as provided in `additional_tools`.") self.prepare_for_new_chat() @property def toolbox(self) -> Dict[str, Tool]: """Get all tool currently available to the agent""" return self._toolbox def format_prompt(self, task, chat_mode=False): description = "\n".join([f"- {name}: {tool.description}" for name, tool in self.toolbox.items()]) if chat_mode: if self.chat_history is None: prompt = self.chat_prompt_template.replace("<>", description) else: prompt = self.chat_history prompt += CHAT_MESSAGE_PROMPT.replace("<>", task) else: prompt = self.run_prompt_template.replace("<>", description) prompt = prompt.replace("<>", task) return prompt def set_stream(self, streamer): """ Set the function use to stream results (which is `print` by default). Args: streamer (`callable`): The function to call when streaming results from the LLM. """ self.log = streamer def chat(self, task, *, return_code=False, remote=False, **kwargs): """ Sends a new request to the agent in a chat. Will use the previous ones in its history. Args: task (`str`): The task to perform return_code (`bool`, *optional*, defaults to `False`): Whether to just return code and not evaluate it. remote (`bool`, *optional*, defaults to `False`): Whether or not to use remote tools (inference endpoints) instead of local ones. kwargs (additional keyword arguments, *optional*): Any keyword argument to send to the agent when evaluating the code. Example: ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.chat("Draw me a picture of rivers and lakes") agent.chat("Transform the picture so that there is a rock in there") ``` """ prompt = self.format_prompt(task, chat_mode=True) result = self.generate_one(prompt, stop=["Human:", "====="]) self.chat_history = prompt + result.strip() + "\n" explanation, code = clean_code_for_chat(result) self.log(f"==Explanation from the agent==\n{explanation}") if code is not None: self.log(f"\n\n==Code generated by the agent==\n{code}") if not return_code: self.log("\n\n==Result==") self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools) self.chat_state.update(kwargs) return evaluate(code, self.cached_tools, self.chat_state, chat_mode=True) else: tool_code = get_tool_creation_code(code, self.toolbox, remote=remote) return f"{tool_code}\n{code}" def prepare_for_new_chat(self): """ Clears the history of prior calls to [`~Agent.chat`]. """ self.chat_history = None self.chat_state = {} self.cached_tools = None def clean_code_for_run(self, result): """ Override this method if you want to change the way the code is cleaned for the `run` method. """ return clean_code_for_run(result) def run(self, task, *, return_code=False, remote=False, **kwargs): """ Sends a request to the agent. Args: task (`str`): The task to perform return_code (`bool`, *optional*, defaults to `False`): Whether to just return code and not evaluate it. remote (`bool`, *optional*, defaults to `False`): Whether or not to use remote tools (inference endpoints) instead of local ones. kwargs (additional keyword arguments, *optional*): Any keyword argument to send to the agent when evaluating the code. Example: ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.run("Draw me a picture of rivers and lakes") ``` """ prompt = self.format_prompt(task) result = self.generate_one(prompt, stop=["Task:"]) explanation, code = self.clean_code_for_run(result) self.log(f"==Explanation from the agent==\n{explanation}") self.log(f"\n\n==Code generated by the agent==\n{code}") if not return_code: self.log("\n\n==Result==") self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools) return evaluate(code, self.cached_tools, state=kwargs.copy()) else: tool_code = get_tool_creation_code(code, self.toolbox, remote=remote) return f"{tool_code}\n{code}" def generate_one(self, prompt, stop): # This is the method to implement in your custom agent. raise NotImplementedError def generate_many(self, prompts, stop): # Override if you have a way to do batch generation faster than one by one return [self.generate_one(prompt, stop) for prompt in prompts] class OpenAiAgent(Agent): """ Agent that uses the openai API to generate code. The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like `"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version. Args: model (`str`, *optional*, defaults to `"text-davinci-003"`): The name of the OpenAI model to use. api_key (`str`, *optional*): The API key to use. If unset, will look for the environment variable `"OPENAI_API_KEY"`. chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py from transformers import OpenAiAgent agent = OpenAiAgent(model="text-davinci-003", api_key=xxx) agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") ``` """ def __init__( self, model="text-davinci-003", api_key=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, ): if not is_openai_available(): raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.") if api_key is None: api_key = os.environ.get("OPENAI_API_KEY", None) if api_key is None: raise ValueError( "You need an openai key to use `OpenAIAgent`. You can get one here: Get one here " "https://openai.com/api/`. If you have one, set it in your env with `os.environ['OPENAI_API_KEY'] = " "xxx." ) else: openai.api_key = api_key self.model = model super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_many(self, prompts, stop): if "gpt" in self.model: return [self._chat_generate(prompt, stop) for prompt in prompts] else: return self._completion_generate(prompts, stop) def generate_one(self, prompt, stop): if "gpt" in self.model: return self._chat_generate(prompt, stop) else: return self._completion_generate([prompt], stop)[0] def _chat_generate(self, prompt, stop): result = openai.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0, stop=stop, ) return result.choices[0].message.content def _completion_generate(self, prompts, stop): result = openai.Completion.create( model=self.model, prompt=prompts, temperature=0, stop=stop, max_tokens=200, ) return [answer["text"] for answer in result["choices"]] class AzureOpenAiAgent(Agent): """ Agent that uses Azure OpenAI to generate code. See the [official documentation](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) to learn how to deploy an openAI model on Azure The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like `"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version. Args: deployment_id (`str`): The name of the deployed Azure openAI model to use. api_key (`str`, *optional*): The API key to use. If unset, will look for the environment variable `"AZURE_OPENAI_API_KEY"`. resource_name (`str`, *optional*): The name of your Azure OpenAI Resource. If unset, will look for the environment variable `"AZURE_OPENAI_RESOURCE_NAME"`. api_version (`str`, *optional*, default to `"2022-12-01"`): The API version to use for this agent. is_chat_mode (`bool`, *optional*): Whether you are using a completion model or a chat model (see note above, chat models won't be as efficient). Will default to `gpt` being in the `deployment_id` or not. chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py from transformers import AzureOpenAiAgent agent = AzureAiAgent(deployment_id="Davinci-003", api_key=xxx, resource_name=yyy) agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") ``` """ def __init__( self, deployment_id, api_key=None, resource_name=None, api_version="2022-12-01", is_chat_model=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, ): if not is_openai_available(): raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.") self.deployment_id = deployment_id openai.api_type = "azure" if api_key is None: api_key = os.environ.get("AZURE_OPENAI_API_KEY", None) if api_key is None: raise ValueError( "You need an Azure openAI key to use `AzureOpenAIAgent`. If you have one, set it in your env with " "`os.environ['AZURE_OPENAI_API_KEY'] = xxx." ) else: openai.api_key = api_key if resource_name is None: resource_name = os.environ.get("AZURE_OPENAI_RESOURCE_NAME", None) if resource_name is None: raise ValueError( "You need a resource_name to use `AzureOpenAIAgent`. If you have one, set it in your env with " "`os.environ['AZURE_OPENAI_RESOURCE_NAME'] = xxx." ) else: openai.api_base = f"https://{resource_name}.openai.azure.com" openai.api_version = api_version if is_chat_model is None: is_chat_model = "gpt" in deployment_id.lower() self.is_chat_model = is_chat_model super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_many(self, prompts, stop): if self.is_chat_model: return [self._chat_generate(prompt, stop) for prompt in prompts] else: return self._completion_generate(prompts, stop) def generate_one(self, prompt, stop): if self.is_chat_model: return self._chat_generate(prompt, stop) else: return self._completion_generate([prompt], stop)[0] def _chat_generate(self, prompt, stop): result = openai.ChatCompletion.create( engine=self.deployment_id, messages=[{"role": "user", "content": prompt}], temperature=0, stop=stop, ) return result["choices"][0]["message"]["content"] def _completion_generate(self, prompts, stop): result = openai.Completion.create( engine=self.deployment_id, prompt=prompts, temperature=0, stop=stop, max_tokens=200, ) return [answer["text"] for answer in result["choices"]] class HfAgent(Agent): """ Agent that uses an inference endpoint to generate code. Args: url_endpoint (`str`): The name of the url endpoint to use. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py from transformers import HfAgent agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") ``` """ def __init__( self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None ): self.url_endpoint = url_endpoint if token is None: self.token = f"Bearer {HfFolder().get_token()}" elif token.startswith("Bearer") or token.startswith("Basic"): self.token = token else: self.token = f"Bearer {token}" super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) def generate_one(self, prompt, stop): headers = {"Authorization": self.token} inputs = { "inputs": prompt, "parameters": {"max_new_tokens": 200, "return_full_text": False, "stop": stop}, } response = requests.post(self.url_endpoint, json=inputs, headers=headers) if response.status_code == 429: logger.info("Getting rate-limited, waiting a tiny bit before trying again.") time.sleep(1) return self._generate_one(prompt) elif response.status_code != 200: raise ValueError(f"Error {response.status_code}: {response.json()}") result = response.json()[0]["generated_text"] # Inference API returns the stop sequence for stop_seq in stop: if result.endswith(stop_seq): return result[: -len(stop_seq)] return result class LocalAgent(Agent): """ Agent that uses a local model and tokenizer to generate code. Args: model ([`PreTrainedModel`]): The model to use for the agent. tokenizer ([`PreTrainedTokenizer`]): The tokenizer to use for the agent. chat_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `chat` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `chat_prompt_template.txt` in this repo in this case. run_prompt_template (`str`, *optional*): Pass along your own prompt if you want to override the default template for the `run` method. Can be the actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named `run_prompt_template.txt` in this repo in this case. additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): Any additional tools to include on top of the default ones. If you pass along a tool with the same name as one of the default tools, that default tool will be overridden. Example: ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent checkpoint = "bigcode/starcoder" model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(checkpoint) agent = LocalAgent(model, tokenizer) agent.run("Draw me a picture of rivers and lakes.") ``` """ def __init__(self, model, tokenizer, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): self.model = model self.tokenizer = tokenizer super().__init__( chat_prompt_template=chat_prompt_template, run_prompt_template=run_prompt_template, additional_tools=additional_tools, ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): """ Convenience method to build a `LocalAgent` from a pretrained checkpoint. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): The name of a repo on the Hub or a local path to a folder containing both model and tokenizer. kwargs (`Dict[str, Any]`, *optional*): Keyword arguments passed along to [`~PreTrainedModel.from_pretrained`]. Example: ```py import torch from transformers import LocalAgent agent = LocalAgent.from_pretrained("bigcode/starcoder", device_map="auto", torch_dtype=torch.bfloat16) agent.run("Draw me a picture of rivers and lakes.") ``` """ model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **kwargs) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(model, tokenizer) @property def _model_device(self): if hasattr(self.model, "hf_device_map"): return list(self.model.hf_device_map.values())[0] for param in self.model.parameters(): return param.device def generate_one(self, prompt, stop): encoded_inputs = self.tokenizer(prompt, return_tensors="pt").to(self._model_device) src_len = encoded_inputs["input_ids"].shape[1] stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop, self.tokenizer)]) outputs = self.model.generate( encoded_inputs["input_ids"], max_new_tokens=200, stopping_criteria=stopping_criteria ) result = self.tokenizer.decode(outputs[0].tolist()[src_len:]) # Inference API returns the stop sequence for stop_seq in stop: if result.endswith(stop_seq): result = result[: -len(stop_seq)] return result class StopSequenceCriteria(StoppingCriteria): """ This class can be used to stop generation whenever a sequence of tokens is encountered. Args: stop_sequences (`str` or `List[str]`): The sequence (or list of sequences) on which to stop execution. tokenizer: The tokenizer used to decode the model outputs. """ def __init__(self, stop_sequences, tokenizer): if isinstance(stop_sequences, str): stop_sequences = [stop_sequences] self.stop_sequences = stop_sequences self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs) -> bool: decoded_output = self.tokenizer.decode(input_ids.tolist()[0]) return any(decoded_output.endswith(stop_sequence) for stop_sequence in self.stop_sequences)