#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .agents import BASE_PYTHON_TOOLS, clean_code_for_chat from .python_interpreter import InterpretorError, evaluate ### Fake tools for test def classifier(text, labels): return f"This is the classification of {text} along {labels}." def translator(text, src_lang, tgt_lang): return f"This is the translation of {text} from {src_lang} to {tgt_lang}." def speaker(text): return f"This is actually a sound reading {text}." def transcriber(audio): if "sound" not in audio: raise ValueError(f"`audio` ({audio}) is not a sound.") return f"This is the transcribed text from {audio}." def image_generator(prompt): return f"This is actually an image representing {prompt}." def image_captioner(image): if "image" not in image: raise ValueError(f"`image` ({image}) is not an image.") return f"This is a description of {image}." def image_transformer(image, prompt): if "image" not in image: raise ValueError(f"`image` ({image}) is not an image.") return f"This is a transformation of {image} according to {prompt}." def question_answerer(text, question): return f"This is the answer to {question} from {text}." def image_qa(image, question): if "image" not in image: raise ValueError(f"`image` ({image}) is not an image.") return f"This is the answer to {question} from {image}." def text_downloader(url): return f"This is the content of {url}." def summarizer(text): return f"This is a summary of {text}." def video_generator(prompt, seconds=2): return f"A video of {prompt}" def document_qa(image, question): return f"This is the answer to {question} from the document {image}." def image_segmenter(image, prompt): return f"This is the mask of {prompt} in {image}" TEST_TOOLS = { "text_classifier": classifier, "translator": translator, "text_reader": speaker, "summarizer": summarizer, "transcriber": transcriber, "image_generator": image_generator, "image_captioner": image_captioner, "image_transformer": image_transformer, "text_qa": question_answerer, "text_downloader": text_downloader, "image_qa": image_qa, "video_generator": video_generator, "document_qa": document_qa, "image_segmenter": image_segmenter, } class Problem: """ A class regrouping all the information to solve a problem on which we will evaluate agents. Args: task (`str` ou `list[str]`): One or several descriptions of the task to perform. If a list, it should contain variations on the phrasing, but for the same task. inputs (`list[str]` or `dict[str, str]`): The inputs that will be fed to the tools. For this testing environment, only strings are accepted as values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of inputs expected (the value used will be `<>` in this case). answer (`str` or `list[str`]): The theoretical answer (or list of possible valid answers) to the problem, as code. """ def __init__(self, task, inputs, answer): self.task = task self.inputs = inputs self.answer = answer ### The list of problems the agent will be evaluated on. EVALUATION_TASKS = [ Problem( task=[ "Is the following `text` (in Spanish) positive or negative?", "Is the text in the variable `text` (in Spanish) positive or negative?", "Translate the following `text` from Spanish to English then tell me if its positive or negative.", ], inputs=["text"], answer="""text_classifier(translator(text, src_lang="Spanish", tgt_lang="English"), labels=["positive", "negative"])""", ), Problem( task=[ "Tell me out loud what the `image` contains.", "Describe the following `image` out loud.", "Find what is in the picture stored in `image` then read it out loud.", ], inputs=["image"], answer=[ "text_reader(image_captioner(image))", "text_reader(image_qa(image, question='What is in the image?'))", ], ), Problem( task=[ "Generate an image from the text given in `text_input`. Then transform it according to the text in `prompt`.", "Use the following `text_input` to generate an image, then transform it by using the text in `prompt`.", ], inputs=["text_input", "prompt"], answer="image_transformer(image_generator(text_input), prompt)", ), Problem( task=[ "Download the content of `url`, summarize it then generate an image from its content.", "Use a summary of the web page at `url` to generate an image.", "Summarize the content of the web page at `url`, and use the result to generate an image.", ], inputs=["url"], answer="image_generator(summarizer(text_downloader(url)))", ), Problem( task=[ "Transform the following `image` using the prompt in `text`. The prompt is in Spanish.", "Use the text prompt in `text` (in Spanish) to transform the following `image`.", "Translate the `text` from Spanish to English then use it to transform the picture in `image`.", ], inputs=["text", "image"], answer="image_transformer(image, translator(text, src_lang='Spanish', tgt_lang='English'))", ), Problem( task=[ "Download the content of `url`, summarize it then read it out loud to me.", "Read me a summary of the web page at `url`.", ], inputs=["url"], answer="text_reader(summarizer(text_downloader(url)))", ), Problem( task=[ "Generate an image from the text given in `text_input`.", ], inputs=["text_input"], answer="image_generator(text_input)", ), Problem( task=[ "Replace the beaver in the `image` by the `prompt`.", "Transform the `image` so that it contains the `prompt`.", "Use `prompt` to transform this `image`.", ], inputs=["image", "prompt"], answer="image_transformer(image, prompt)", ), Problem( task=[ "Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.", "Summarize `text`, read it out loud then transcribe the audio and translate it in French.", "Read me a summary of the `text` out loud. Transcribe this and translate it in French.", ], inputs=["text"], answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')", ), Problem( task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], inputs={"prompt": "A lobster swimming"}, answer="video_generator('A lobster swimming')", ), Problem( task=[ "Download the following file `url`, summarize it in a few words and generate a video from it." "Fetch the file at this `url`, summarize it, and create an animation out of it." ], inputs=["url"], answer="video_generator(summarizer(text_downloader(url)))", ), ] EVALUATION_CHATS = [ [ Problem( task=[ "Translate the following `text` from Spanish to English.", "Translate the following `text` from Spanish to English.", ], inputs=["text"], answer="translated_text=translator(text, src_lang='Spanish', tgt_lang='English')", ), Problem( task=[ "Is it positive or negative?", "Tell me if its positive or negative.", ], inputs=[], answer="text_classifier(translated_text, labels=['positive', 'negative'])", ), ], [ Problem( task=[ "What does this `image` contain?", "Describe the following `image`.", "Find what is in the picture stored in `image`", ], inputs=["image"], answer=[ "description=image_captioner(image)", "description=image_qa(image, question='What is in the image?')", ], ), Problem( task=["Now, read the description out loud.", "Great! Can you read it out loud?", "Read it out loud."], inputs=[], answer=["audio=text_reader(description)", "audio=text_reader(description)"], ), ], [ Problem( task=[ "Generate an image from the text given in `text_input`.", "Use the following `text_input` to generate an image", ], inputs=["text_input"], answer="image = image_generator(text_input)", ), Problem( task=[ "Transform it according to the text in `prompt`.", "Transform it by using the text in `prompt`.", ], inputs=["prompt"], answer="image_transformer(image, prompt)", ), ], [ Problem( task=[ "Download the content of `url` and summarize it.", "Summarize the content of the web page at `url`.", ], inputs=["url"], answer="summary = summarizer(text_downloader(url))", ), Problem( task=[ "Generate an image from its content.", "Use the previous result to generate an image.", ], inputs=[], answer="image_generator(summary)", ), ], [ Problem( task=[ "Translate this Spanish `text` in English.", "Translate the `text` from Spanish to English.", ], inputs=["text"], answer="translated_text = translator(text, src_lang='Spanish', tgt_lang='English')", ), Problem( task=[ "Transform the following `image` using the translated `text`.", "Use the previous result to transform the following `image`.", ], inputs=["image"], answer="image_transformer(image, translated_text)", ), ], [ Problem( task=["Download the content of `url`.", "Get me the text on the weg page `url`."], inputs=["url"], answer="text = text_downloader(url)", ), Problem( task=["Summarize this text.", "Summarize this text."], inputs=[], answer="summary = summarizer(text)", ), Problem( task=["Read it out loud to me.", "Read me the previous result."], inputs=[], answer="text_reader(summary)", ), ], [ Problem( task=[ "Generate an image from the text given in `text_input`.", ], inputs=["text_input"], answer="image_generator(text_input)", ), ], [ Problem( task=[ "Replace the beaver in the `image` by the `prompt`.", "Transform the `image` so that it contains the `prompt`.", "Use `prompt` to transform this `image`.", ], inputs=["image", "prompt"], answer="image_transformer(image, prompt)", ), ], [ Problem( task=["Provide me the summary of the `text`.", "Summarize `text`."], inputs=["text"], answer="summary = summarizer(text)", ), Problem( task=["Read this summary to me.", "Read it out loud."], inputs=[], answer="audio = text_reader(summarizer(text))", ), Problem( task=["Transcribing the previous result back in text.", "Transcribe the audio."], inputs=[], answer="text = transcriber(audio)", ), Problem( task=["Translating the last result in French.", "Translate this in French."], inputs=[], answer="translator(text, src_lang='English', tgt_lang='French')", ), ], [ Problem( task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."], inputs={"prompt": "A lobster swimming"}, answer="video_generator('A lobster swimming')", ), ], [ Problem( task=[ "Download the content of `url` and summarize it.", "Summarize the content of the web page at `url`.", ], inputs=["url"], answer="summary = summarizer(text_downloader(url))", ), Problem( task=["generate a video from it.", "Create an animation from the last result."], inputs=[], answer="video_generator(summary)", ), ], ] def get_theoretical_tools(agent_answer, theoretical_answer, code_answer): if not isinstance(theoretical_answer, list): return {name for name in TEST_TOOLS if name in code_answer} if isinstance(agent_answer, dict): for one_answer, one_code in zip(theoretical_answer, code_answer): if one_answer in agent_answer.values(): return {name for name in TEST_TOOLS if name in one_code} for one_answer, one_code in zip(theoretical_answer, code_answer): if agent_answer == one_answer: return {name for name in TEST_TOOLS if name in one_code} return {name for name in TEST_TOOLS if name in code_answer[0]} def evaluate_code(code, inputs=None, state=None, verbose=False, return_interpretor_error=False): tools = BASE_PYTHON_TOOLS.copy() for name, tool in TEST_TOOLS.items(): if name not in code: continue tools[name] = tool if isinstance(inputs, dict): inputs = inputs.copy() elif inputs is not None: inputs = {inp: f"<<{inp}>>" for inp in inputs} if state is not None: state.update(inputs) else: state = inputs try: return evaluate(code, tools, state) except InterpretorError as e: return str(e) except Exception as e: if verbose: print(e) return None def score_code(agent_answer, theoretical_answer, verbose: bool = False): if verbose: print(agent_answer, theoretical_answer) theoretical_answer = theoretical_answer if isinstance(theoretical_answer, list) else [theoretical_answer] if agent_answer in theoretical_answer: if verbose: print("Perfect!") return 1 elif isinstance(agent_answer, dict) and any(v in theoretical_answer for v in agent_answer.values()): if verbose: print("Almsot perfect, result in state!") return 0.75 else: if verbose: print("Result is not the right one but code executed.") return 0.3 def evaluate_one_result(explanation, code, agent_answer, theoretical_answer, answer, verbose=False): tools_in_explanation = {name for name in TEST_TOOLS if f"`{name}`" in explanation} theoretical_tools = get_theoretical_tools(agent_answer, theoretical_answer, answer) if tools_in_explanation == theoretical_tools: tool_selection_score = 1.0 tool_selection_errors = None else: missing_tools = len(theoretical_tools - tools_in_explanation) unexpected_tools = len(tools_in_explanation - theoretical_tools) tool_selection_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) tool_selection_errors = { "selected_tools": tools_in_explanation, "theoretical_tools": theoretical_tools, } tools_in_code = {name for name in TEST_TOOLS if name in code} if tools_in_code == theoretical_tools: tool_used_score = 1.0 tool_used_errors = None else: missing_tools = len(theoretical_tools - tools_in_code) unexpected_tools = len(tools_in_code - theoretical_tools) tool_used_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools) tool_used_errors = { "selected_tools": tools_in_explanation, "theoretical_tools": theoretical_tools, } score = score_code(agent_answer, theoretical_answer, verbose=verbose) if score < 1.0: code_errors = { "code_produced": code, "evaluation": agent_answer, "theoretical_answer": theoretical_answer, } else: code_errors = None return (tool_selection_score, tool_used_score, score), (tool_selection_errors, tool_used_errors, code_errors) def evaluate_agent(agent, batch_size=8, verbose=False, return_errors=False): """ Evaluates a new agent on all `EVALUATION_TASKS`. Example: ```py agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) bads = new_evaluate_agent(agent) for bad in bads: print(bad) ``` """ # Sanity check agent_tools = set(agent.toolbox.keys()) if agent_tools != set(TEST_TOOLS): missing_tools = set(TEST_TOOLS) - agent_tools unexpected_tools = set(agent_tools) - TEST_TOOLS raise ValueError( f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." ) eval_tasks = [] eval_idx = [] for idx, pb in enumerate(EVALUATION_TASKS): if isinstance(pb.task, list): eval_tasks.extend(pb.task) eval_idx.extend([idx] * len(pb.task)) else: eval_tasks.append(pb.task) eval_idx.append(idx) tool_selection_score = 0 tool_used_score = 0 code_score = 0 if return_errors: tool_selection_errors = {} tool_used_errors = {} code_errors = {} for start_idx in range(0, len(eval_tasks), batch_size): end_idx = min(start_idx + batch_size, len(eval_tasks)) batch_tasks = eval_tasks[start_idx:end_idx] prompts = [agent.format_prompt(task) for task in batch_tasks] results = agent.generate_many(prompts, stop=["Task:"]) for idx, result in enumerate(results): problem = EVALUATION_TASKS[eval_idx[start_idx + idx]] if verbose: print(f"====Task {start_idx + idx}====\n{batch_tasks[idx]}\n") explanation, code = agent.clean_code_for_run(result) # Evaluate agent answer and code answer agent_answer = evaluate_code(code, problem.inputs, verbose=verbose) if isinstance(problem.answer, list): theoretical_answer = [evaluate_code(answer, problem.inputs) for answer in problem.answer] else: theoretical_answer = evaluate_code(problem.answer, problem.inputs) scores, errors = evaluate_one_result( explanation, code, agent_answer, theoretical_answer, problem.answer, verbose=verbose ) tool_selection_score += scores[0] tool_used_score += scores[1] code_score += scores[2] if return_errors: if errors[0] is not None: tool_selection_errors[batch_tasks[idx]] = errors[0] if errors[1] is not None: tool_used_errors[batch_tasks[idx]] = errors[1] if errors[2] is not None: code_errors[batch_tasks[idx]] = errors[2] scores = { "tool selection score": 100 * (tool_selection_score / len(eval_tasks)), "tool used score": 100 * (tool_used_score / len(eval_tasks)), "code score": 100 * (code_score / len(eval_tasks)), } if return_errors: return scores, tool_selection_errors, tool_used_errors, code_errors else: return scores def evaluate_chat_agent(agent, verbose=False, return_errors=False): """ Evaluates a new agent on all `EVALUATION_CHATS`. Example: ```py agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key) bads = new_evaluate_agent(agent) for bad in bads: print(bad) ``` """ # Sanity check agent_tools = set(agent.toolbox.keys()) if agent_tools != set(TEST_TOOLS): missing_tools = set(TEST_TOOLS) - agent_tools unexpected_tools = agent_tools - set(TEST_TOOLS) raise ValueError( f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}." ) tool_selection_score = 0 tool_used_score = 0 code_score = 0 total_steps = 0 if return_errors: tool_selection_errors = {} tool_used_errors = {} code_errors = {} for chat_problem in EVALUATION_CHATS: if isinstance(chat_problem[0].task, str): resolved_problems = [chat_problem] else: resolved_problems = [ [Problem(task=pb.task[i], inputs=pb.inputs, answer=pb.answer) for pb in chat_problem] for i in range(len(chat_problem[0].task)) ] for problem in resolved_problems: agent.prepare_for_new_chat() agent_state = {} theoretical_state = ( [{} for _ in range(len(problem[0].answer))] if isinstance(problem[0].answer, list) else {} ) for step, step_problem in enumerate(problem): if verbose: print(step_problem.task) total_steps += 1 prompt = agent.format_prompt(step_problem.task, chat_mode=True) result = agent.generate_one(prompt, stop=["Human:", "====="]) agent.chat_history = prompt + result + "\n" explanation, code = clean_code_for_chat(result) if verbose: print(f"==Explanation from the agent==\n{explanation}") print(f"\n==Code generated by the agent==\n{code}") # Evaluate agent answer and code answer agent_answer = evaluate_code(code, step_problem.inputs, state=agent_state, verbose=verbose) answer = step_problem.answer if isinstance(answer, list): theoretical_answer = [ evaluate_code(a, step_problem.inputs, state=state) for a, state in zip(answer, theoretical_state) ] else: theoretical_answer = evaluate_code(answer, step_problem.inputs, state=theoretical_state) scores, errors = evaluate_one_result( explanation, code, agent_answer, theoretical_answer, answer, verbose=verbose ) tool_selection_score += scores[0] tool_used_score += scores[1] code_score += scores[2] if return_errors: if errors[0] is not None: tool_selection_errors[step_problem.task] = errors[0] if errors[1] is not None: tool_used_errors[step_problem.task] = errors[1] if errors[2] is not None: code_errors[step_problem.task] = errors[2] scores = { "tool selection score": 100 * (tool_selection_score / total_steps), "tool used score": 100 * (tool_used_score / total_steps), "code score": 100 * (code_score / total_steps), } if return_errors: return scores, tool_selection_errors, tool_used_errors, code_errors else: return scores