# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from dataclasses import dataclass, field from typing import Optional, Tuple from .training_args import TrainingArguments from .utils import cached_property, is_tf_available, logging, requires_backends logger = logging.get_logger(__name__) if is_tf_available(): import tensorflow as tf from .modeling_tf_utils import keras @dataclass class TFTrainingArguments(TrainingArguments): """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using [`HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: output_dir (`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (`bool`, *optional*, defaults to `False`): If `True`, overwrite the content of the output directory. Use this to continue training if `output_dir` points to a checkpoint directory. do_train (`bool`, *optional*, defaults to `False`): Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. do_eval (`bool`, *optional*): Whether to run evaluation on the validation set or not. Will be set to `True` if `evaluation_strategy` is different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. do_predict (`bool`, *optional*, defaults to `False`): Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. evaluation_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`): The evaluation strategy to adopt during training. Possible values are: - `"no"`: No evaluation is done during training. - `"steps"`: Evaluation is done (and logged) every `eval_steps`. - `"epoch"`: Evaluation is done at the end of each epoch. per_device_train_batch_size (`int`, *optional*, defaults to 8): The batch size per GPU/TPU core/CPU for training. per_device_eval_batch_size (`int`, *optional*, defaults to 8): The batch size per GPU/TPU core/CPU for evaluation. gradient_accumulation_steps (`int`, *optional*, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples. learning_rate (`float`, *optional*, defaults to 5e-5): The initial learning rate for Adam. weight_decay (`float`, *optional*, defaults to 0): The weight decay to apply (if not zero). adam_beta1 (`float`, *optional*, defaults to 0.9): The beta1 hyperparameter for the Adam optimizer. adam_beta2 (`float`, *optional*, defaults to 0.999): The beta2 hyperparameter for the Adam optimizer. adam_epsilon (`float`, *optional*, defaults to 1e-8): The epsilon hyperparameter for the Adam optimizer. max_grad_norm (`float`, *optional*, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(`float`, *optional*, defaults to 3.0): Total number of training epochs to perform. max_steps (`int`, *optional*, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`. For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until `max_steps` is reached. warmup_ratio (`float`, *optional*, defaults to 0.0): Ratio of total training steps used for a linear warmup from 0 to `learning_rate`. warmup_steps (`int`, *optional*, defaults to 0): Number of steps used for a linear warmup from 0 to `learning_rate`. Overrides any effect of `warmup_ratio`. logging_dir (`str`, *optional*): [TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to *runs/**CURRENT_DATETIME_HOSTNAME***. logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`): The logging strategy to adopt during training. Possible values are: - `"no"`: No logging is done during training. - `"epoch"`: Logging is done at the end of each epoch. - `"steps"`: Logging is done every `logging_steps`. logging_first_step (`bool`, *optional*, defaults to `False`): Whether to log and evaluate the first `global_step` or not. logging_steps (`int`, *optional*, defaults to 500): Number of update steps between two logs if `logging_strategy="steps"`. save_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`): The checkpoint save strategy to adopt during training. Possible values are: - `"no"`: No save is done during training. - `"epoch"`: Save is done at the end of each epoch. - `"steps"`: Save is done every `save_steps`. save_steps (`int`, *optional*, defaults to 500): Number of updates steps before two checkpoint saves if `save_strategy="steps"`. save_total_limit (`int`, *optional*): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in `output_dir`. no_cuda (`bool`, *optional*, defaults to `False`): Whether to not use CUDA even when it is available or not. seed (`int`, *optional*, defaults to 42): Random seed that will be set at the beginning of training. fp16 (`bool`, *optional*, defaults to `False`): Whether to use 16-bit (mixed) precision training (through NVIDIA Apex) instead of 32-bit training. fp16_opt_level (`str`, *optional*, defaults to 'O1'): For `fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the [Apex documentation](https://nvidia.github.io/apex/amp). local_rank (`int`, *optional*, defaults to -1): During distributed training, the rank of the process. tpu_num_cores (`int`, *optional*): When training on TPU, the number of TPU cores (automatically passed by launcher script). debug (`bool`, *optional*, defaults to `False`): Whether to activate the trace to record computation graphs and profiling information or not. dataloader_drop_last (`bool`, *optional*, defaults to `False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (`int`, *optional*, defaults to 1000): Number of update steps before two evaluations. past_index (`int`, *optional*, defaults to -1): Some models like [TransformerXL](../model_doc/transformerxl) or :doc*XLNet <../model_doc/xlnet>* can make use of the past hidden states for their predictions. If this argument is set to a positive int, the `Trainer` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument `mems`. tpu_name (`str`, *optional*): The name of the TPU the process is running on. tpu_zone (`str`, *optional*): The zone of the TPU the process is running on. If not specified, we will attempt to automatically detect from metadata. gcp_project (`str`, *optional*): Google Cloud Project name for the Cloud TPU-enabled project. If not specified, we will attempt to automatically detect from metadata. run_name (`str`, *optional*): A descriptor for the run. Notably used for wandb logging. xla (`bool`, *optional*): Whether to activate the XLA compilation or not. """ framework = "tf" tpu_name: Optional[str] = field( default=None, metadata={"help": "Name of TPU"}, ) tpu_zone: Optional[str] = field( default=None, metadata={"help": "Zone of TPU"}, ) gcp_project: Optional[str] = field( default=None, metadata={"help": "Name of Cloud TPU-enabled project"}, ) poly_power: float = field( default=1.0, metadata={"help": "Power for the Polynomial decay LR scheduler."}, ) xla: bool = field(default=False, metadata={"help": "Whether to activate the XLA compilation or not"}) @cached_property def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", int]: requires_backends(self, ["tf"]) logger.info("Tensorflow: setting up strategy") gpus = tf.config.list_physical_devices("GPU") # Set to float16 at first if self.fp16: keras.mixed_precision.set_global_policy("mixed_float16") if self.no_cuda: strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0") else: try: if self.tpu_name: tpu = tf.distribute.cluster_resolver.TPUClusterResolver( self.tpu_name, zone=self.tpu_zone, project=self.gcp_project ) else: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: if self.tpu_name: raise RuntimeError(f"Couldn't connect to TPU {self.tpu_name}!") else: tpu = None if tpu: # Set to bfloat16 in case of TPU if self.fp16: keras.mixed_precision.set_global_policy("mixed_bfloat16") tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.TPUStrategy(tpu) elif len(gpus) == 0: strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0") elif len(gpus) == 1: strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") elif len(gpus) > 1: # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` strategy = tf.distribute.MirroredStrategy() else: raise ValueError("Cannot find the proper strategy, please check your environment properties.") return strategy @property def strategy(self) -> "tf.distribute.Strategy": """ The strategy used for distributed training. """ requires_backends(self, ["tf"]) return self._setup_strategy @property def n_replicas(self) -> int: """ The number of replicas (CPUs, GPUs or TPU cores) used in this training. """ requires_backends(self, ["tf"]) return self._setup_strategy.num_replicas_in_sync @property def should_log(self): """ Whether or not the current process should produce log. """ return False # TF Logging is handled by Keras not the Trainer @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from `per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size return per_device_batch_size * self.n_replicas @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from `per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size return per_device_batch_size * self.n_replicas @property def n_gpu(self) -> int: """ The number of replicas (CPUs, GPUs or TPU cores) used in this training. """ requires_backends(self, ["tf"]) warnings.warn( "The n_gpu argument is deprecated and will be removed in a future version, use n_replicas instead.", FutureWarning, ) return self._setup_strategy.num_replicas_in_sync