from typing import List, Tuple, Sequence from .einops import Tensor, Reduction, EinopsError, _prepare_transformation_recipe, _apply_recipe_array_api from .packing import analyze_pattern, prod def reduce(tensor: Tensor, pattern: str, reduction: Reduction, **axes_lengths: int) -> Tensor: if isinstance(tensor, list): if len(tensor) == 0: raise TypeError("Einops can't be applied to an empty list") xp = tensor[0].__array_namespace__() tensor = xp.stack(tensor) else: xp = tensor.__array_namespace__() try: hashable_axes_lengths = tuple(axes_lengths.items()) recipe = _prepare_transformation_recipe(pattern, reduction, axes_names=tuple(axes_lengths), ndim=tensor.ndim) return _apply_recipe_array_api( xp, recipe=recipe, tensor=tensor, reduction_type=reduction, axes_lengths=hashable_axes_lengths, ) except EinopsError as e: message = ' Error while processing {}-reduction pattern "{}".'.format(reduction, pattern) if not isinstance(tensor, list): message += "\n Input tensor shape: {}. ".format(tensor.shape) else: message += "\n Input is list. " message += "Additional info: {}.".format(axes_lengths) raise EinopsError(message + "\n {}".format(e)) def repeat(tensor: Tensor, pattern: str, **axes_lengths) -> Tensor: return reduce(tensor, pattern, reduction="repeat", **axes_lengths) def rearrange(tensor: Tensor, pattern: str, **axes_lengths) -> Tensor: return reduce(tensor, pattern, reduction="rearrange", **axes_lengths) def asnumpy(tensor: Tensor): import numpy as np return np.from_dlpack(tensor) Shape = Tuple def pack(tensors: Sequence[Tensor], pattern: str) -> Tuple[Tensor, List[Shape]]: n_axes_before, n_axes_after, min_axes = analyze_pattern(pattern, "pack") xp = tensors[0].__array_namespace__() reshaped_tensors: List[Tensor] = [] packed_shapes: List[Shape] = [] for i, tensor in enumerate(tensors): shape = tensor.shape if len(shape) < min_axes: raise EinopsError( f"packed tensor #{i} (enumeration starts with 0) has shape {shape}, " f"while pattern {pattern} assumes at least {min_axes} axes" ) axis_after_packed_axes = len(shape) - n_axes_after packed_shapes.append(shape[n_axes_before:axis_after_packed_axes]) reshaped_tensors.append(xp.reshape(tensor, (*shape[:n_axes_before], -1, *shape[axis_after_packed_axes:]))) return xp.concat(reshaped_tensors, axis=n_axes_before), packed_shapes def unpack(tensor: Tensor, packed_shapes: List[Shape], pattern: str) -> List[Tensor]: xp = tensor.__array_namespace__() n_axes_before, n_axes_after, min_axes = analyze_pattern(pattern, opname="unpack") # backend = get_backend(tensor) input_shape = tensor.shape if len(input_shape) != n_axes_before + 1 + n_axes_after: raise EinopsError(f"unpack(..., {pattern}) received input of wrong dim with shape {input_shape}") unpacked_axis: int = n_axes_before lengths_of_composed_axes: List[int] = [-1 if -1 in p_shape else prod(p_shape) for p_shape in packed_shapes] n_unknown_composed_axes = sum(x == -1 for x in lengths_of_composed_axes) if n_unknown_composed_axes > 1: raise EinopsError( f"unpack(..., {pattern}) received more than one -1 in {packed_shapes} and can't infer dimensions" ) # following manipulations allow to skip some shape verifications # and leave it to backends # [[], [2, 3], [4], [-1, 5], [6]] < examples of packed_axis # split positions when computed should be # [0, 1, 7, 11, N-6 , N ], where N = length of axis split_positions = [0] * len(packed_shapes) + [input_shape[unpacked_axis]] if n_unknown_composed_axes == 0: for i, x in enumerate(lengths_of_composed_axes[:-1]): split_positions[i + 1] = split_positions[i] + x else: unknown_composed_axis: int = lengths_of_composed_axes.index(-1) for i in range(unknown_composed_axis): split_positions[i + 1] = split_positions[i] + lengths_of_composed_axes[i] for j in range(unknown_composed_axis + 1, len(lengths_of_composed_axes))[::-1]: split_positions[j] = split_positions[j + 1] - lengths_of_composed_axes[j] shape_start = input_shape[:unpacked_axis] shape_end = input_shape[unpacked_axis + 1 :] slice_filler = (slice(None, None),) * unpacked_axis try: return [ xp.reshape( # shortest way slice arbitrary axis tensor[(*slice_filler, slice(split_positions[i], split_positions[i + 1]), ...)], (*shape_start, *element_shape, *shape_end), ) for i, element_shape in enumerate(packed_shapes) ] except BaseException: # this hits if there is an error during reshapes, which means passed shapes were incorrect raise RuntimeError( f'Error during unpack(..., "{pattern}"): could not split axis of size {split_positions[-1]}' f" into requested {packed_shapes}" )