# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helpful utility functions and classes in relation to exploring API endpoints with the aim for a user-friendly interface. """ import math import re import warnings from dataclasses import dataclass from typing import TYPE_CHECKING, List, Optional, Union from ..repocard_data import ModelCardData if TYPE_CHECKING: from ..hf_api import ModelInfo def _is_emission_within_treshold(model_info: "ModelInfo", minimum_threshold: float, maximum_threshold: float) -> bool: """Checks if a model's emission is within a given threshold. Args: model_info (`ModelInfo`): A model info object containing the model's emission information. minimum_threshold (`float`): A minimum carbon threshold to filter by, such as 1. maximum_threshold (`float`): A maximum carbon threshold to filter by, such as 10. Returns: `bool`: Whether the model's emission is within the given threshold. """ if minimum_threshold is None and maximum_threshold is None: raise ValueError("Both `minimum_threshold` and `maximum_threshold` cannot both be `None`") if minimum_threshold is None: minimum_threshold = -1 if maximum_threshold is None: maximum_threshold = math.inf card_data = getattr(model_info, "card_data", None) if card_data is None or not isinstance(card_data, (dict, ModelCardData)): return False # Get CO2 emission metadata emission = card_data.get("co2_eq_emissions", None) if isinstance(emission, dict): emission = emission["emissions"] if not emission: return False # Filter out if value is missing or out of range matched = re.search(r"\d+\.\d+|\d+", str(emission)) if matched is None: return False emission_value = float(matched.group(0)) return minimum_threshold <= emission_value <= maximum_threshold @dataclass class DatasetFilter: """ A class that converts human-readable dataset search parameters into ones compatible with the REST API. For all parameters capitalization does not matter. The `DatasetFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_datasets`]. Args: author (`str`, *optional*): A string that can be used to identify datasets on the Hub by the original uploader (author or organization), such as `facebook` or `huggingface`. benchmark (`str` or `List`, *optional*): A string or list of strings that can be used to identify datasets on the Hub by their official benchmark. dataset_name (`str`, *optional*): A string or list of strings that can be used to identify datasets on the Hub by its name, such as `SQAC` or `wikineural` language_creators (`str` or `List`, *optional*): A string or list of strings that can be used to identify datasets on the Hub with how the data was curated, such as `crowdsourced` or `machine_generated`. language (`str` or `List`, *optional*): A string or list of strings representing a two-character language to filter datasets by on the Hub. multilinguality (`str` or `List`, *optional*): A string or list of strings representing a filter for datasets that contain multiple languages. size_categories (`str` or `List`, *optional*): A string or list of strings that can be used to identify datasets on the Hub by the size of the dataset such as `100K>> from huggingface_hub import DatasetFilter >>> # Using author >>> new_filter = DatasetFilter(author="facebook") >>> # Using benchmark >>> new_filter = DatasetFilter(benchmark="raft") >>> # Using dataset_name >>> new_filter = DatasetFilter(dataset_name="wikineural") >>> # Using language_creator >>> new_filter = DatasetFilter(language_creator="crowdsourced") >>> # Using language >>> new_filter = DatasetFilter(language="en") >>> # Using multilinguality >>> new_filter = DatasetFilter(multilinguality="multilingual") >>> # Using size_categories >>> new_filter = DatasetFilter(size_categories="100K>> # Using task_categories >>> new_filter = DatasetFilter(task_categories="audio_classification") >>> # Using task_ids >>> new_filter = DatasetFilter(task_ids="paraphrase") ``` """ author: Optional[str] = None benchmark: Optional[Union[str, List[str]]] = None dataset_name: Optional[str] = None language_creators: Optional[Union[str, List[str]]] = None language: Optional[Union[str, List[str]]] = None multilinguality: Optional[Union[str, List[str]]] = None size_categories: Optional[Union[str, List[str]]] = None task_categories: Optional[Union[str, List[str]]] = None task_ids: Optional[Union[str, List[str]]] = None def __post_init__(self): warnings.warn( "'DatasetFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_datasets` method.", category=FutureWarning, ) @dataclass class ModelFilter: """ A class that converts human-readable model search parameters into ones compatible with the REST API. For all parameters capitalization does not matter. The `ModelFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_models`]. Args: author (`str`, *optional*): A string that can be used to identify models on the Hub by the original uploader (author or organization), such as `facebook` or `huggingface`. library (`str` or `List`, *optional*): A string or list of strings of foundational libraries models were originally trained from, such as pytorch, tensorflow, or allennlp. language (`str` or `List`, *optional*): A string or list of strings of languages, both by name and country code, such as "en" or "English" model_name (`str`, *optional*): A string that contain complete or partial names for models on the Hub, such as "bert" or "bert-base-cased" task (`str` or `List`, *optional*): A string or list of strings of tasks models were designed for, such as: "fill-mask" or "automatic-speech-recognition" tags (`str` or `List`, *optional*): A string tag or a list of tags to filter models on the Hub by, such as `text-generation` or `spacy`. trained_dataset (`str` or `List`, *optional*): A string tag or a list of string tags of the trained dataset for a model on the Hub. Examples: ```python >>> from huggingface_hub import ModelFilter >>> # For the author_or_organization >>> new_filter = ModelFilter(author_or_organization="facebook") >>> # For the library >>> new_filter = ModelFilter(library="pytorch") >>> # For the language >>> new_filter = ModelFilter(language="french") >>> # For the model_name >>> new_filter = ModelFilter(model_name="bert") >>> # For the task >>> new_filter = ModelFilter(task="text-classification") >>> from huggingface_hub import HfApi >>> api = HfApi() # To list model tags >>> new_filter = ModelFilter(tags="benchmark:raft") >>> # Related to the dataset >>> new_filter = ModelFilter(trained_dataset="common_voice") ``` """ author: Optional[str] = None library: Optional[Union[str, List[str]]] = None language: Optional[Union[str, List[str]]] = None model_name: Optional[str] = None task: Optional[Union[str, List[str]]] = None trained_dataset: Optional[Union[str, List[str]]] = None tags: Optional[Union[str, List[str]]] = None def __post_init__(self): warnings.warn( "'ModelFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_models` method.", FutureWarning, )