# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Helpful utility functions and classes in relation to exploring API endpoints
with the aim for a user-friendly interface.
"""
import math
import re
import warnings
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Union
from ..repocard_data import ModelCardData
if TYPE_CHECKING:
from ..hf_api import ModelInfo
def _is_emission_within_treshold(model_info: "ModelInfo", minimum_threshold: float, maximum_threshold: float) -> bool:
"""Checks if a model's emission is within a given threshold.
Args:
model_info (`ModelInfo`):
A model info object containing the model's emission information.
minimum_threshold (`float`):
A minimum carbon threshold to filter by, such as 1.
maximum_threshold (`float`):
A maximum carbon threshold to filter by, such as 10.
Returns:
`bool`: Whether the model's emission is within the given threshold.
"""
if minimum_threshold is None and maximum_threshold is None:
raise ValueError("Both `minimum_threshold` and `maximum_threshold` cannot both be `None`")
if minimum_threshold is None:
minimum_threshold = -1
if maximum_threshold is None:
maximum_threshold = math.inf
card_data = getattr(model_info, "card_data", None)
if card_data is None or not isinstance(card_data, (dict, ModelCardData)):
return False
# Get CO2 emission metadata
emission = card_data.get("co2_eq_emissions", None)
if isinstance(emission, dict):
emission = emission["emissions"]
if not emission:
return False
# Filter out if value is missing or out of range
matched = re.search(r"\d+\.\d+|\d+", str(emission))
if matched is None:
return False
emission_value = float(matched.group(0))
return minimum_threshold <= emission_value <= maximum_threshold
@dataclass
class DatasetFilter:
"""
A class that converts human-readable dataset search parameters into ones
compatible with the REST API. For all parameters capitalization does not
matter.
The `DatasetFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_datasets`].
Args:
author (`str`, *optional*):
A string that can be used to identify datasets on
the Hub by the original uploader (author or organization), such as
`facebook` or `huggingface`.
benchmark (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by their official benchmark.
dataset_name (`str`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by its name, such as `SQAC` or `wikineural`
language_creators (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub with how the data was curated, such as `crowdsourced` or
`machine_generated`.
language (`str` or `List`, *optional*):
A string or list of strings representing a two-character language to
filter datasets by on the Hub.
multilinguality (`str` or `List`, *optional*):
A string or list of strings representing a filter for datasets that
contain multiple languages.
size_categories (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the size of the dataset such as `100K>> from huggingface_hub import DatasetFilter
>>> # Using author
>>> new_filter = DatasetFilter(author="facebook")
>>> # Using benchmark
>>> new_filter = DatasetFilter(benchmark="raft")
>>> # Using dataset_name
>>> new_filter = DatasetFilter(dataset_name="wikineural")
>>> # Using language_creator
>>> new_filter = DatasetFilter(language_creator="crowdsourced")
>>> # Using language
>>> new_filter = DatasetFilter(language="en")
>>> # Using multilinguality
>>> new_filter = DatasetFilter(multilinguality="multilingual")
>>> # Using size_categories
>>> new_filter = DatasetFilter(size_categories="100K>> # Using task_categories
>>> new_filter = DatasetFilter(task_categories="audio_classification")
>>> # Using task_ids
>>> new_filter = DatasetFilter(task_ids="paraphrase")
```
"""
author: Optional[str] = None
benchmark: Optional[Union[str, List[str]]] = None
dataset_name: Optional[str] = None
language_creators: Optional[Union[str, List[str]]] = None
language: Optional[Union[str, List[str]]] = None
multilinguality: Optional[Union[str, List[str]]] = None
size_categories: Optional[Union[str, List[str]]] = None
task_categories: Optional[Union[str, List[str]]] = None
task_ids: Optional[Union[str, List[str]]] = None
def __post_init__(self):
warnings.warn(
"'DatasetFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_datasets` method.",
category=FutureWarning,
)
@dataclass
class ModelFilter:
"""
A class that converts human-readable model search parameters into ones
compatible with the REST API. For all parameters capitalization does not
matter.
The `ModelFilter` class is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to [`list_models`].
Args:
author (`str`, *optional*):
A string that can be used to identify models on the Hub by the
original uploader (author or organization), such as `facebook` or
`huggingface`.
library (`str` or `List`, *optional*):
A string or list of strings of foundational libraries models were
originally trained from, such as pytorch, tensorflow, or allennlp.
language (`str` or `List`, *optional*):
A string or list of strings of languages, both by name and country
code, such as "en" or "English"
model_name (`str`, *optional*):
A string that contain complete or partial names for models on the
Hub, such as "bert" or "bert-base-cased"
task (`str` or `List`, *optional*):
A string or list of strings of tasks models were designed for, such
as: "fill-mask" or "automatic-speech-recognition"
tags (`str` or `List`, *optional*):
A string tag or a list of tags to filter models on the Hub by, such
as `text-generation` or `spacy`.
trained_dataset (`str` or `List`, *optional*):
A string tag or a list of string tags of the trained dataset for a
model on the Hub.
Examples:
```python
>>> from huggingface_hub import ModelFilter
>>> # For the author_or_organization
>>> new_filter = ModelFilter(author_or_organization="facebook")
>>> # For the library
>>> new_filter = ModelFilter(library="pytorch")
>>> # For the language
>>> new_filter = ModelFilter(language="french")
>>> # For the model_name
>>> new_filter = ModelFilter(model_name="bert")
>>> # For the task
>>> new_filter = ModelFilter(task="text-classification")
>>> from huggingface_hub import HfApi
>>> api = HfApi()
# To list model tags
>>> new_filter = ModelFilter(tags="benchmark:raft")
>>> # Related to the dataset
>>> new_filter = ModelFilter(trained_dataset="common_voice")
```
"""
author: Optional[str] = None
library: Optional[Union[str, List[str]]] = None
language: Optional[Union[str, List[str]]] = None
model_name: Optional[str] = None
task: Optional[Union[str, List[str]]] = None
trained_dataset: Optional[Union[str, List[str]]] = None
tags: Optional[Union[str, List[str]]] = None
def __post_init__(self):
warnings.warn(
"'ModelFilter' is deprecated and will be removed in huggingface_hub>=0.24. Please pass the filter parameters as keyword arguments directly to the `list_models` method.",
FutureWarning,
)