# Natural Language Toolkit: NLTK Command-Line Interface # # Copyright (C) 2001-2023 NLTK Project # URL: # For license information, see LICENSE.TXT import click from tqdm import tqdm from nltk import word_tokenize from nltk.util import parallelize_preprocess CONTEXT_SETTINGS = dict(help_option_names=["-h", "--help"]) @click.group(context_settings=CONTEXT_SETTINGS) @click.version_option() def cli(): pass @cli.command("tokenize") @click.option( "--language", "-l", default="en", help="The language for the Punkt sentence tokenization.", ) @click.option( "--preserve-line", "-l", default=True, is_flag=True, help="An option to keep the preserve the sentence and not sentence tokenize it.", ) @click.option("--processes", "-j", default=1, help="No. of processes.") @click.option("--encoding", "-e", default="utf8", help="Specify encoding of file.") @click.option( "--delimiter", "-d", default=" ", help="Specify delimiter to join the tokens." ) def tokenize_file(language, preserve_line, processes, encoding, delimiter): """This command tokenizes text stream using nltk.word_tokenize""" with click.get_text_stream("stdin", encoding=encoding) as fin: with click.get_text_stream("stdout", encoding=encoding) as fout: # If it's single process, joblib parallelization is slower, # so just process line by line normally. if processes == 1: for line in tqdm(fin.readlines()): print(delimiter.join(word_tokenize(line)), end="\n", file=fout) else: for outline in parallelize_preprocess( word_tokenize, fin.readlines(), processes, progress_bar=True ): print(delimiter.join(outline), end="\n", file=fout)