# Natural Language Toolkit: WordNet stemmer interface # # Copyright (C) 2001-2023 NLTK Project # Author: Steven Bird # Edward Loper # URL: # For license information, see LICENSE.TXT from nltk.corpus import wordnet as wn class WordNetLemmatizer: """ WordNet Lemmatizer Lemmatize using WordNet's built-in morphy function. Returns the input word unchanged if it cannot be found in WordNet. >>> from nltk.stem import WordNetLemmatizer >>> wnl = WordNetLemmatizer() >>> print(wnl.lemmatize('dogs')) dog >>> print(wnl.lemmatize('churches')) church >>> print(wnl.lemmatize('aardwolves')) aardwolf >>> print(wnl.lemmatize('abaci')) abacus >>> print(wnl.lemmatize('hardrock')) hardrock """ def lemmatize(self, word: str, pos: str = "n") -> str: """Lemmatize `word` using WordNet's built-in morphy function. Returns the input word unchanged if it cannot be found in WordNet. :param word: The input word to lemmatize. :type word: str :param pos: The Part Of Speech tag. Valid options are `"n"` for nouns, `"v"` for verbs, `"a"` for adjectives, `"r"` for adverbs and `"s"` for satellite adjectives. :param pos: str :return: The lemma of `word`, for the given `pos`. """ lemmas = wn._morphy(word, pos) return min(lemmas, key=len) if lemmas else word def __repr__(self): return ""