""" API that are reported to numba.cuda """ import contextlib import os import numpy as np from .cudadrv import devicearray, devices, driver from numba.core import config from numba.cuda.api_util import prepare_shape_strides_dtype # NDarray device helper require_context = devices.require_context current_context = devices.get_context gpus = devices.gpus @require_context def from_cuda_array_interface(desc, owner=None, sync=True): """Create a DeviceNDArray from a cuda-array-interface description. The ``owner`` is the owner of the underlying memory. The resulting DeviceNDArray will acquire a reference from it. If ``sync`` is ``True``, then the imported stream (if present) will be synchronized. """ version = desc.get('version') # Mask introduced in version 1 if 1 <= version: mask = desc.get('mask') # Would ideally be better to detect if the mask is all valid if mask is not None: raise NotImplementedError('Masked arrays are not supported') shape = desc['shape'] strides = desc.get('strides') dtype = np.dtype(desc['typestr']) shape, strides, dtype = prepare_shape_strides_dtype( shape, strides, dtype, order='C') size = driver.memory_size_from_info(shape, strides, dtype.itemsize) devptr = driver.get_devptr_for_active_ctx(desc['data'][0]) data = driver.MemoryPointer( current_context(), devptr, size=size, owner=owner) stream_ptr = desc.get('stream', None) if stream_ptr is not None: stream = external_stream(stream_ptr) if sync and config.CUDA_ARRAY_INTERFACE_SYNC: stream.synchronize() else: stream = 0 # No "Numba default stream", not the CUDA default stream da = devicearray.DeviceNDArray(shape=shape, strides=strides, dtype=dtype, gpu_data=data, stream=stream) return da def as_cuda_array(obj, sync=True): """Create a DeviceNDArray from any object that implements the :ref:`cuda array interface `. A view of the underlying GPU buffer is created. No copying of the data is done. The resulting DeviceNDArray will acquire a reference from `obj`. If ``sync`` is ``True``, then the imported stream (if present) will be synchronized. """ if not is_cuda_array(obj): raise TypeError("*obj* doesn't implement the cuda array interface.") else: return from_cuda_array_interface(obj.__cuda_array_interface__, owner=obj, sync=sync) def is_cuda_array(obj): """Test if the object has defined the `__cuda_array_interface__` attribute. Does not verify the validity of the interface. """ return hasattr(obj, '__cuda_array_interface__') def is_float16_supported(): """Whether 16-bit floats are supported. float16 is always supported in current versions of Numba - returns True. """ return True @require_context def to_device(obj, stream=0, copy=True, to=None): """to_device(obj, stream=0, copy=True, to=None) Allocate and transfer a numpy ndarray or structured scalar to the device. To copy host->device a numpy array:: ary = np.arange(10) d_ary = cuda.to_device(ary) To enqueue the transfer to a stream:: stream = cuda.stream() d_ary = cuda.to_device(ary, stream=stream) The resulting ``d_ary`` is a ``DeviceNDArray``. To copy device->host:: hary = d_ary.copy_to_host() To copy device->host to an existing array:: ary = np.empty(shape=d_ary.shape, dtype=d_ary.dtype) d_ary.copy_to_host(ary) To enqueue the transfer to a stream:: hary = d_ary.copy_to_host(stream=stream) """ if to is None: to, new = devicearray.auto_device(obj, stream=stream, copy=copy, user_explicit=True) return to if copy: to.copy_to_device(obj, stream=stream) return to @require_context def device_array(shape, dtype=np.float_, strides=None, order='C', stream=0): """device_array(shape, dtype=np.float_, strides=None, order='C', stream=0) Allocate an empty device ndarray. Similar to :meth:`numpy.empty`. """ shape, strides, dtype = prepare_shape_strides_dtype(shape, strides, dtype, order) return devicearray.DeviceNDArray(shape=shape, strides=strides, dtype=dtype, stream=stream) @require_context def managed_array(shape, dtype=np.float_, strides=None, order='C', stream=0, attach_global=True): """managed_array(shape, dtype=np.float_, strides=None, order='C', stream=0, attach_global=True) Allocate a np.ndarray with a buffer that is managed. Similar to np.empty(). Managed memory is supported on Linux / x86 and PowerPC, and is considered experimental on Windows and Linux / AArch64. :param attach_global: A flag indicating whether to attach globally. Global attachment implies that the memory is accessible from any stream on any device. If ``False``, attachment is *host*, and memory is only accessible by devices with Compute Capability 6.0 and later. """ shape, strides, dtype = prepare_shape_strides_dtype(shape, strides, dtype, order) bytesize = driver.memory_size_from_info(shape, strides, dtype.itemsize) buffer = current_context().memallocmanaged(bytesize, attach_global=attach_global) npary = np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order, buffer=buffer) managedview = np.ndarray.view(npary, type=devicearray.ManagedNDArray) managedview.device_setup(buffer, stream=stream) return managedview @require_context def pinned_array(shape, dtype=np.float_, strides=None, order='C'): """pinned_array(shape, dtype=np.float_, strides=None, order='C') Allocate an :class:`ndarray ` with a buffer that is pinned (pagelocked). Similar to :func:`np.empty() `. """ shape, strides, dtype = prepare_shape_strides_dtype(shape, strides, dtype, order) bytesize = driver.memory_size_from_info(shape, strides, dtype.itemsize) buffer = current_context().memhostalloc(bytesize) return np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order, buffer=buffer) @require_context def mapped_array(shape, dtype=np.float_, strides=None, order='C', stream=0, portable=False, wc=False): """mapped_array(shape, dtype=np.float_, strides=None, order='C', stream=0, portable=False, wc=False) Allocate a mapped ndarray with a buffer that is pinned and mapped on to the device. Similar to np.empty() :param portable: a boolean flag to allow the allocated device memory to be usable in multiple devices. :param wc: a boolean flag to enable writecombined allocation which is faster to write by the host and to read by the device, but slower to write by the host and slower to write by the device. """ shape, strides, dtype = prepare_shape_strides_dtype(shape, strides, dtype, order) bytesize = driver.memory_size_from_info(shape, strides, dtype.itemsize) buffer = current_context().memhostalloc(bytesize, mapped=True) npary = np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order, buffer=buffer) mappedview = np.ndarray.view(npary, type=devicearray.MappedNDArray) mappedview.device_setup(buffer, stream=stream) return mappedview @contextlib.contextmanager @require_context def open_ipc_array(handle, shape, dtype, strides=None, offset=0): """ A context manager that opens a IPC *handle* (*CUipcMemHandle*) that is represented as a sequence of bytes (e.g. *bytes*, tuple of int) and represent it as an array of the given *shape*, *strides* and *dtype*. The *strides* can be omitted. In that case, it is assumed to be a 1D C contiguous array. Yields a device array. The IPC handle is closed automatically when context manager exits. """ dtype = np.dtype(dtype) # compute size size = np.prod(shape) * dtype.itemsize # manually recreate the IPC mem handle if driver.USE_NV_BINDING: driver_handle = driver.binding.CUipcMemHandle() driver_handle.reserved = handle else: driver_handle = driver.drvapi.cu_ipc_mem_handle(*handle) # use *IpcHandle* to open the IPC memory ipchandle = driver.IpcHandle(None, driver_handle, size, offset=offset) yield ipchandle.open_array(current_context(), shape=shape, strides=strides, dtype=dtype) ipchandle.close() def synchronize(): "Synchronize the current context." return current_context().synchronize() def _contiguous_strides_like_array(ary): """ Given an array, compute strides for a new contiguous array of the same shape. """ # Don't recompute strides if the default strides will be sufficient to # create a contiguous array. if ary.flags['C_CONTIGUOUS'] or ary.flags['F_CONTIGUOUS'] or ary.ndim <= 1: return None # Otherwise, we need to compute new strides using an algorithm adapted from # NumPy v1.17.4's PyArray_NewLikeArrayWithShape in # core/src/multiarray/ctors.c. We permute the strides in ascending order # then compute the stride for the dimensions with the same permutation. # Stride permutation. E.g. a stride array (4, -2, 12) becomes # [(1, -2), (0, 4), (2, 12)] strideperm = [ x for x in enumerate(ary.strides) ] strideperm.sort(key=lambda x: x[1]) # Compute new strides using permutation strides = [0] * len(ary.strides) stride = ary.dtype.itemsize for i_perm, _ in strideperm: strides[i_perm] = stride stride *= ary.shape[i_perm] return tuple(strides) def _order_like_array(ary): if ary.flags['F_CONTIGUOUS'] and not ary.flags['C_CONTIGUOUS']: return 'F' else: return 'C' def device_array_like(ary, stream=0): """ Call :func:`device_array() ` with information from the array. """ strides = _contiguous_strides_like_array(ary) order = _order_like_array(ary) return device_array(shape=ary.shape, dtype=ary.dtype, strides=strides, order=order, stream=stream) def mapped_array_like(ary, stream=0, portable=False, wc=False): """ Call :func:`mapped_array() ` with the information from the array. """ strides = _contiguous_strides_like_array(ary) order = _order_like_array(ary) return mapped_array(shape=ary.shape, dtype=ary.dtype, strides=strides, order=order, stream=stream, portable=portable, wc=wc) def pinned_array_like(ary): """ Call :func:`pinned_array() ` with the information from the array. """ strides = _contiguous_strides_like_array(ary) order = _order_like_array(ary) return pinned_array(shape=ary.shape, dtype=ary.dtype, strides=strides, order=order) # Stream helper @require_context def stream(): """ Create a CUDA stream that represents a command queue for the device. """ return current_context().create_stream() @require_context def default_stream(): """ Get the default CUDA stream. CUDA semantics in general are that the default stream is either the legacy default stream or the per-thread default stream depending on which CUDA APIs are in use. In Numba, the APIs for the legacy default stream are always the ones in use, but an option to use APIs for the per-thread default stream may be provided in future. """ return current_context().get_default_stream() @require_context def legacy_default_stream(): """ Get the legacy default CUDA stream. """ return current_context().get_legacy_default_stream() @require_context def per_thread_default_stream(): """ Get the per-thread default CUDA stream. """ return current_context().get_per_thread_default_stream() @require_context def external_stream(ptr): """Create a Numba stream object for a stream allocated outside Numba. :param ptr: Pointer to the external stream to wrap in a Numba Stream :type ptr: int """ return current_context().create_external_stream(ptr) # Page lock @require_context @contextlib.contextmanager def pinned(*arylist): """A context manager for temporary pinning a sequence of host ndarrays. """ pmlist = [] for ary in arylist: pm = current_context().mempin(ary, driver.host_pointer(ary), driver.host_memory_size(ary), mapped=False) pmlist.append(pm) yield @require_context @contextlib.contextmanager def mapped(*arylist, **kws): """A context manager for temporarily mapping a sequence of host ndarrays. """ assert not kws or 'stream' in kws, "Only accept 'stream' as keyword." stream = kws.get('stream', 0) pmlist = [] devarylist = [] for ary in arylist: pm = current_context().mempin(ary, driver.host_pointer(ary), driver.host_memory_size(ary), mapped=True) pmlist.append(pm) devary = devicearray.from_array_like(ary, gpu_data=pm, stream=stream) devarylist.append(devary) try: if len(devarylist) == 1: yield devarylist[0] else: yield devarylist finally: # When exiting from `with cuda.mapped(*arrs) as mapped_arrs:`, the name # `mapped_arrs` stays in scope, blocking automatic unmapping based on # reference count. We therefore invoke the finalizer manually. for pm in pmlist: pm.free() def event(timing=True): """ Create a CUDA event. Timing data is only recorded by the event if it is created with ``timing=True``. """ evt = current_context().create_event(timing=timing) return evt event_elapsed_time = driver.event_elapsed_time # Device selection def select_device(device_id): """ Make the context associated with device *device_id* the current context. Returns a Device instance. Raises exception on error. """ context = devices.get_context(device_id) return context.device def get_current_device(): "Get current device associated with the current thread" return current_context().device def list_devices(): "Return a list of all detected devices" return devices.gpus def close(): """ Explicitly clears all contexts in the current thread, and destroys all contexts if the current thread is the main thread. """ devices.reset() def _auto_device(ary, stream=0, copy=True): return devicearray.auto_device(ary, stream=stream, copy=copy) def detect(): """ Detect supported CUDA hardware and print a summary of the detected hardware. Returns a boolean indicating whether any supported devices were detected. """ devlist = list_devices() print('Found %d CUDA devices' % len(devlist)) supported_count = 0 for dev in devlist: attrs = [] cc = dev.compute_capability kernel_timeout = dev.KERNEL_EXEC_TIMEOUT tcc = dev.TCC_DRIVER fp32_to_fp64_ratio = dev.SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO attrs += [('Compute Capability', '%d.%d' % cc)] attrs += [('PCI Device ID', dev.PCI_DEVICE_ID)] attrs += [('PCI Bus ID', dev.PCI_BUS_ID)] attrs += [('UUID', dev.uuid)] attrs += [('Watchdog', 'Enabled' if kernel_timeout else 'Disabled')] if os.name == "nt": attrs += [('Compute Mode', 'TCC' if tcc else 'WDDM')] attrs += [('FP32/FP64 Performance Ratio', fp32_to_fp64_ratio)] if cc < (3, 5): support = '[NOT SUPPORTED: CC < 3.5]' elif cc < (5, 0): support = '[SUPPORTED (DEPRECATED)]' supported_count += 1 else: support = '[SUPPORTED]' supported_count += 1 print('id %d %20s %40s' % (dev.id, dev.name, support)) for key, val in attrs: print('%40s: %s' % (key, val)) print('Summary:') print('\t%d/%d devices are supported' % (supported_count, len(devlist))) return supported_count > 0 @contextlib.contextmanager def defer_cleanup(): """ Temporarily disable memory deallocation. Use this to prevent resource deallocation breaking asynchronous execution. For example:: with defer_cleanup(): # all cleanup is deferred in here do_speed_critical_code() # cleanup can occur here Note: this context manager can be nested. """ with current_context().defer_cleanup(): yield profiling = require_context(driver.profiling) profile_start = require_context(driver.profile_start) profile_stop = require_context(driver.profile_stop)