import os from typing import Dict, Optional, Union import numpy as np import tensorflow as tf from safetensors import numpy, safe_open def save(tensors: Dict[str, tf.Tensor], metadata: Optional[Dict[str, str]] = None) -> bytes: """ Saves a dictionary of tensors into raw bytes in safetensors format. Args: tensors (`Dict[str, tf.Tensor]`): The incoming tensors. Tensors need to be contiguous and dense. metadata (`Dict[str, str]`, *optional*, defaults to `None`): Optional text only metadata you might want to save in your header. For instance it can be useful to specify more about the underlying tensors. This is purely informative and does not affect tensor loading. Returns: `bytes`: The raw bytes representing the format Example: ```python from safetensors.tensorflow import save import tensorflow as tf tensors = {"embedding": tf.zeros((512, 1024)), "attention": tf.zeros((256, 256))} byte_data = save(tensors) ``` """ np_tensors = _tf2np(tensors) return numpy.save(np_tensors, metadata=metadata) def save_file( tensors: Dict[str, tf.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]] = None, ) -> None: """ Saves a dictionary of tensors into raw bytes in safetensors format. Args: tensors (`Dict[str, tf.Tensor]`): The incoming tensors. Tensors need to be contiguous and dense. filename (`str`, or `os.PathLike`)): The filename we're saving into. metadata (`Dict[str, str]`, *optional*, defaults to `None`): Optional text only metadata you might want to save in your header. For instance it can be useful to specify more about the underlying tensors. This is purely informative and does not affect tensor loading. Returns: `None` Example: ```python from safetensors.tensorflow import save_file import tensorflow as tf tensors = {"embedding": tf.zeros((512, 1024)), "attention": tf.zeros((256, 256))} save_file(tensors, "model.safetensors") ``` """ np_tensors = _tf2np(tensors) return numpy.save_file(np_tensors, filename, metadata=metadata) def load(data: bytes) -> Dict[str, tf.Tensor]: """ Loads a safetensors file into tensorflow format from pure bytes. Args: data (`bytes`): The content of a safetensors file Returns: `Dict[str, tf.Tensor]`: dictionary that contains name as key, value as `tf.Tensor` on cpu Example: ```python from safetensors.tensorflow import load file_path = "./my_folder/bert.safetensors" with open(file_path, "rb") as f: data = f.read() loaded = load(data) ``` """ flat = numpy.load(data) return _np2tf(flat) def load_file(filename: Union[str, os.PathLike]) -> Dict[str, tf.Tensor]: """ Loads a safetensors file into tensorflow format. Args: filename (`str`, or `os.PathLike`)): The name of the file which contains the tensors Returns: `Dict[str, tf.Tensor]`: dictionary that contains name as key, value as `tf.Tensor` Example: ```python from safetensors.tensorflow import load_file file_path = "./my_folder/bert.safetensors" loaded = load_file(file_path) ``` """ result = {} with safe_open(filename, framework="tf") as f: for k in f.keys(): result[k] = f.get_tensor(k) return result def _np2tf(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, tf.Tensor]: for k, v in numpy_dict.items(): numpy_dict[k] = tf.convert_to_tensor(v) return numpy_dict def _tf2np(tf_dict: Dict[str, tf.Tensor]) -> Dict[str, np.array]: for k, v in tf_dict.items(): tf_dict[k] = v.numpy() return tf_dict