from typing import Optional, List from thinc.types import Floats2d from thinc.api import Model from spacy.util import registry from spacy.tokens import Doc def EntityLinker_v1( tok2vec: Model, nO: Optional[int] = None ) -> Model[List[Doc], Floats2d]: chain = registry.get("layers", "chain.v1") clone = registry.get("layers", "clone.v1") with Model.define_operators({">>": chain, "**": clone}): token_width = tok2vec.maybe_get_dim("nO") Linear = registry.get("layers", "Linear.v1") output_layer = Linear(nO=nO, nI=token_width) list2ragged = registry.get("layers", "list2ragged.v1") reduce_mean = registry.get("layers", "reduce_mean.v1") residual = registry.get("layers", "residual.v1") Maxout = registry.get("layers", "Maxout.v1") model = ( tok2vec >> list2ragged() >> reduce_mean() >> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore[arg-type] >> output_layer ) model.set_ref("output_layer", output_layer) model.set_ref("tok2vec", tok2vec) return model