from sympy.core import Basic, Expr from sympy.core.sympify import _sympify from sympy.matrices.expressions.transpose import transpose class DotProduct(Expr): """ Dot product of vector matrices The input should be two 1 x n or n x 1 matrices. The output represents the scalar dotproduct. This is similar to using MatrixElement and MatMul, except DotProduct does not require that one vector to be a row vector and the other vector to be a column vector. >>> from sympy import MatrixSymbol, DotProduct >>> A = MatrixSymbol('A', 1, 3) >>> B = MatrixSymbol('B', 1, 3) >>> DotProduct(A, B) DotProduct(A, B) >>> DotProduct(A, B).doit() A[0, 0]*B[0, 0] + A[0, 1]*B[0, 1] + A[0, 2]*B[0, 2] """ def __new__(cls, arg1, arg2): arg1, arg2 = _sympify((arg1, arg2)) if not arg1.is_Matrix: raise TypeError("Argument 1 of DotProduct is not a matrix") if not arg2.is_Matrix: raise TypeError("Argument 2 of DotProduct is not a matrix") if not (1 in arg1.shape): raise TypeError("Argument 1 of DotProduct is not a vector") if not (1 in arg2.shape): raise TypeError("Argument 2 of DotProduct is not a vector") if set(arg1.shape) != set(arg2.shape): raise TypeError("DotProduct arguments are not the same length") return Basic.__new__(cls, arg1, arg2) def doit(self, expand=False, **hints): if self.args[0].shape == self.args[1].shape: if self.args[0].shape[0] == 1: mul = self.args[0]*transpose(self.args[1]) else: mul = transpose(self.args[0])*self.args[1] else: if self.args[0].shape[0] == 1: mul = self.args[0]*self.args[1] else: mul = transpose(self.args[0])*transpose(self.args[1]) return mul[0]