from typing import Callable, Optional, Tuple, cast from ..config import registry from ..initializers import he_normal_init, zero_init from ..model import Model from ..types import Floats1d, Floats2d from ..util import get_width, partial from .chain import chain from .dropout import Dropout from .layernorm import LayerNorm @registry.layers("HardSwish.v1") def HardSwish( nO: Optional[int] = None, nI: Optional[int] = None, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, dropout: Optional[float] = None, normalize: bool = False, ) -> Model[Floats2d, Floats2d]: if init_W is None: init_W = he_normal_init if init_b is None: init_b = zero_init model: Model[Floats2d, Floats2d] = Model( "hardswish", forward, init=partial(init, init_W, init_b), dims={"nO": nO, "nI": nI}, params={"W": None, "b": None}, ) if normalize: model = chain(model, LayerNorm(nI=nO)) if dropout is not None: model = chain(model, cast(Model[Floats2d, Floats2d], Dropout(dropout))) return model def forward( model: Model[Floats2d, Floats2d], X: Floats2d, is_train: bool ) -> Tuple[Floats2d, Callable]: W = cast(Floats2d, model.get_param("W")) b = cast(Floats1d, model.get_param("b")) Y_preact = model.ops.affine(X, W, b) Y = model.ops.hard_swish(Y_preact) def backprop(dY: Floats2d) -> Floats2d: dY = model.ops.backprop_hard_swish(dY, Y_preact, inplace=False) model.inc_grad("b", dY.sum(axis=0)) model.inc_grad("W", model.ops.gemm(dY, X, trans1=True)) return model.ops.gemm(dY, W) return Y, backprop def init( init_W: Callable, init_b: Callable, model: Model[Floats2d, Floats2d], X: Optional[Floats2d] = None, Y: Optional[Floats2d] = None, ) -> None: if X is not None: model.set_dim("nI", get_width(X)) if Y is not None: model.set_dim("nO", get_width(Y)) model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI")))) model.set_param("b", init_b(model.ops, (model.get_dim("nO"),)))