from typing import Callable, Optional, Tuple, cast from ..config import registry from ..initializers import glorot_uniform_init, zero_init from ..model import Model from ..types import Floats2d from ..util import get_width, partial from .chain import chain from .dropout import Dropout from .layernorm import LayerNorm InT = Floats2d OutT = Floats2d @registry.layers("Maxout.v1") def Maxout( nO: Optional[int] = None, nI: Optional[int] = None, nP: Optional[int] = 3, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, dropout: Optional[float] = None, normalize: bool = False, ) -> Model[InT, OutT]: if init_W is None: init_W = glorot_uniform_init if init_b is None: init_b = zero_init model: Model[InT, OutT] = Model( "maxout", forward, init=partial(init, init_W, init_b), dims={"nO": nO, "nI": nI, "nP": nP}, params={"W": None, "b": None}, ) if normalize: model = chain(model, LayerNorm(nI=nO)) if dropout is not None: model = chain(model, cast(Model[InT, OutT], Dropout(dropout))) return model def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]: nO = model.get_dim("nO") nP = model.get_dim("nP") nI = model.get_dim("nI") b = model.get_param("b") W = model.get_param("W") W = model.ops.reshape2f(W, nO * nP, nI) Y = model.ops.gemm(X, W, trans2=True) Y += model.ops.reshape1f(b, nO * nP) Z = model.ops.reshape3f(Y, Y.shape[0], nO, nP) best, which = model.ops.maxout(Z) def backprop(d_best: OutT) -> InT: dZ = model.ops.backprop_maxout(d_best, which, nP) # TODO: Add sum methods for Floats3d model.inc_grad("b", dZ.sum(axis=0)) # type: ignore[call-overload] dY = model.ops.reshape2f(dZ, dZ.shape[0], nO * nP) dW = model.ops.reshape3f(model.ops.gemm(dY, X, trans1=True), nO, nP, nI) model.inc_grad("W", dW) return model.ops.gemm(dY, model.ops.reshape2f(W, nO * nP, nI)) return best, backprop def init( init_W: Callable, init_b: Callable, model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None, ) -> None: if X is not None: model.set_dim("nI", get_width(X)) if Y is not None: model.set_dim("nO", get_width(Y)) W_shape = (model.get_dim("nO"), model.get_dim("nP"), model.get_dim("nI")) model.set_param("W", init_W(model.ops, W_shape)) model.set_param("b", init_b(model.ops, (model.get_dim("nO"), model.get_dim("nP"))))