from typing import Callable, Optional, Tuple, cast from ..config import registry from ..model import Model from ..types import Floats1d, Floats2d from ..util import get_width InT = Floats2d OutT = Floats2d @registry.layers("MultiSoftmax.v1") def MultiSoftmax(nOs: Tuple[int, ...], nI: Optional[int] = None) -> Model[InT, OutT]: """Neural network layer that predicts several multi-class attributes at once. For instance, we might predict one class with 6 variables, and another with 5. We predict the 11 neurons required for this, and then softmax them such that columns 0-6 make a probability distribution and columns 6-11 make another. """ return Model( "multisoftmax", forward, init=init, dims={"nO": sum(nOs), "nI": nI}, attrs={"nOs": nOs}, params={"W": None, "b": None}, ) def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]: nOs = model.attrs["nOs"] W = cast(Floats2d, model.get_param("W")) b = cast(Floats1d, model.get_param("b")) def backprop(dY: OutT) -> InT: model.inc_grad("W", model.ops.gemm(dY, X, trans1=True)) model.inc_grad("b", dY.sum(axis=0)) return model.ops.gemm(dY, W) Y = model.ops.gemm(X, W, trans2=True) Y += b i = 0 for out_size in nOs: model.ops.softmax(Y[:, i : i + out_size], inplace=True) i += out_size return Y, backprop def init( model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None ) -> None: if X is not None: model.set_dim("nI", get_width(X)) nO = model.get_dim("nO") nI = model.get_dim("nI") model.set_param("W", model.ops.alloc2f(nO, nI)) model.set_param("b", model.ops.alloc1f(nO))