from typing import Callable, Optional, Tuple from ..config import registry from ..model import Model from ..types import Ragged from ..util import get_width InT = Ragged OutT = Ragged @registry.layers("ParametricAttention.v1") def ParametricAttention(nO: Optional[int] = None) -> Model[InT, OutT]: """Weight inputs by similarity to a learned vector""" return Model("para-attn", forward, init=init, params={"Q": None}, dims={"nO": nO}) def forward(model: Model[InT, OutT], Xr: InT, is_train: bool) -> Tuple[OutT, Callable]: Q = model.get_param("Q") attention, bp_attention = _get_attention(model.ops, Q, Xr.dataXd, Xr.lengths) output, bp_output = _apply_attention(model.ops, attention, Xr.dataXd, Xr.lengths) def backprop(dYr: OutT) -> InT: dX, d_attention = bp_output(dYr.dataXd) dQ, dX2 = bp_attention(d_attention) model.inc_grad("Q", dQ.ravel()) dX += dX2 return Ragged(dX, dYr.lengths) return Ragged(output, Xr.lengths), backprop def init( model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None ) -> None: if X is not None: model.set_dim("nO", get_width(X)) # Randomly initialize the parameter, as though it were an embedding. Q = model.ops.alloc1f(model.get_dim("nO")) Q += model.ops.xp.random.uniform(-0.1, 0.1, Q.shape) model.set_param("Q", Q) def _get_attention(ops, Q, X, lengths): attention = ops.gemm(X, ops.reshape2f(Q, -1, 1)) attention = ops.softmax_sequences(attention, lengths) def get_attention_bwd(d_attention): d_attention = ops.backprop_softmax_sequences(d_attention, attention, lengths) dQ = ops.gemm(X, d_attention, trans1=True) dX = ops.xp.outer(d_attention, Q) return dQ, dX return attention, get_attention_bwd def _apply_attention(ops, attention, X, lengths): output = X * attention def apply_attention_bwd(d_output): d_attention = (X * d_output).sum(axis=1, keepdims=True) dX = d_output * attention return dX, d_attention return output, apply_attention_bwd