from typing import Callable, Optional, Tuple, cast from ..config import registry from ..initializers import zero_init from ..model import Model from ..types import Floats1d, Floats2d from ..util import get_width, partial InT = Floats2d OutT = Floats2d @registry.layers("Sigmoid.v1") def Sigmoid( nO: Optional[int] = None, nI: Optional[int] = None, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, ) -> Model[InT, OutT]: """A dense layer, followed by a sigmoid (logistic) activation function. This is usually used instead of the Softmax layer as an output for multi-label classification. """ if init_W is None: init_W = zero_init if init_b is None: init_b = zero_init return Model( "sigmoid", forward, init=partial(init, init_W, init_b), dims={"nO": nO, "nI": nI}, params={"W": None, "b": None}, ) def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]: W = cast(Floats2d, model.get_param("W")) b = cast(Floats1d, model.get_param("b")) Y = model.ops.affine(X, W, b) Y = model.ops.sigmoid(Y) def backprop(dY: InT) -> OutT: dY = model.ops.backprop_sigmoid(dY, Y, inplace=False) model.inc_grad("b", dY.sum(axis=0)) model.inc_grad("W", model.ops.gemm(dY, X, trans1=True)) return model.ops.gemm(dY, W) return Y, backprop def init( init_W: Callable, init_b: Callable, model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None, ) -> None: if X is not None and model.has_dim("nI") is None: model.set_dim("nI", get_width(X)) if Y is not None and model.has_dim("nO") is None: model.set_dim("nO", get_width(Y)) model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI")))) model.set_param("b", init_b(model.ops, (model.get_dim("nO"),)))