# mypy: ignore-errors import collections import dataclasses import functools import inspect import itertools import sys import types from typing import Dict, List import torch._C import torch._numpy as tnp import torch.utils._pytree as pytree from .. import config, variables from ..bytecode_transformation import create_call_function, create_instruction from ..exc import unimplemented from ..guards import GuardBuilder, install_guard from ..source import AttrSource, GetItemSource, ODictGetItemSource, TypeSource from ..utils import ( check_constant_args, check_unspec_python_args, identity, is_tensor_base_attr_getter, proxy_args_kwargs, ) from .base import VariableTracker from .functions import NestedUserFunctionVariable, UserFunctionVariable from .user_defined import UserDefinedObjectVariable class SuperVariable(VariableTracker): def __init__(self, typevar, objvar=None, specialized=False, **kwargs): super().__init__(**kwargs) # typevar is the fist argument to super(). In the case where no argument # is provided to super(), it is the __class__ object where # the super() function is being called self.typevar = typevar # objvar here must be an instance or subtype of typevar. # In the case where super() is called without arguments, it is the first argument # to the current function where super() is called from (self for regular method, # cls for a classmethod) self.objvar = objvar self.specialized = specialized # directly get attr from self.typevar if true def reconstruct(self, codegen): codegen(variables.BuiltinVariable(super)) codegen(self.typevar) if self.objvar is not None: codegen(self.objvar) codegen.extend_output(create_call_function(2, True)) else: codegen.extend_output(create_call_function(1, True)) def _resolved_getattr_and_source(self, tx, name): assert self.objvar, "1-arg super not implemented" if self.specialized: return getattr(self.typevar.as_python_constant(), name) search_type = self.typevar.as_python_constant() # The rest of this function does two things: # - Walk the mro to find where the attribute comes from to be # able to provide accurate source # - Call the getattr to get the object # Find the class object, where the function lives. # When objvar is "self", use type(self), when objvar is "cls", use it as-is type_to_use = self.objvar.python_type() type_to_use_source = ( TypeSource(self.objvar.source) if self.objvar.source else None ) if issubclass(type_to_use, type): type_to_use = self.objvar.value type_to_use_source = self.objvar.source source = None if self.objvar.source is not None: # Walk the mro tuple to find out the actual class where the # attribute resides. search_mro = type_to_use.__mro__ start_index = search_mro.index(search_type) + 1 for index in range(start_index, len(search_mro)): if hasattr(search_mro[index], name): # Equivalent of something like type(L['self']).__mro__[1].attr_name source = AttrSource( GetItemSource(AttrSource(type_to_use_source, "__mro__"), index), name, ) break # TODO(jansel): there is a small chance this could trigger user code, prevent that return getattr(super(search_type, type_to_use), name), source def var_getattr(self, tx, name: str) -> "VariableTracker": # Check if getattr is a constant. If not, delay the actual work by # wrapping the result in GetAttrVariable. Mostly super is called with a # method, so most of the work is delayed to call_function. # # We could have just implemented a const_getattr. However, super is # special when it comes to finding sources. Compared to other VTs, super # requires the attr name to walk the mro and find the actual source (and # not just AttrSource). value, source = self._resolved_getattr_and_source(self, name) if not variables.ConstantVariable.is_literal(value): return GetAttrVariable(self, name) if source: install_guard(source.make_guard(GuardBuilder.CONSTANT_MATCH)) return variables.ConstantVariable.create(value, source=source) return variables.ConstantVariable.create(value) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": inner_fn, source = self._resolved_getattr_and_source(self, name) if inner_fn is object.__init__: return LambdaVariable(identity) elif inner_fn is torch.nn.Module.__init__: objvar = self.objvar from ..side_effects import AttributeMutationNew if ( isinstance(objvar, variables.UserDefinedObjectVariable) and isinstance(objvar.mutable_local, AttributeMutationNew) and not (args or kwargs) ): tx.output.side_effects.store_attr( objvar, "__call_nn_module_init", variables.ConstantVariable.create(True), ) return variables.ConstantVariable.create(None) else: unimplemented("super() nn.Module.__init__") elif isinstance(inner_fn, types.FunctionType): return variables.UserFunctionVariable( inner_fn, source=source ).call_function(tx, [self.objvar] + args, kwargs) elif isinstance(inner_fn, types.MethodType): return variables.UserMethodVariable( inner_fn.__func__, self.objvar, source=source ).call_function(tx, args, kwargs) elif ( inner_fn is collections.OrderedDict.__getitem__ and isinstance(self.objvar, variables.UserDefinedObjectVariable) and self.objvar.source and len(args) == 1 and len(kwargs) == 0 and args[0].is_python_constant() ): from .builder import VariableBuilder key = args[0].as_python_constant() return VariableBuilder(tx, ODictGetItemSource(self.objvar.source, key))( collections.OrderedDict.__getitem__(self.objvar.value, key) ) elif inner_fn in ( collections.OrderedDict.__setitem__, object.__setattr__, ) and isinstance(self.objvar, variables.CustomizedDictVariable): assert not kwargs and len(args) == 2 return super(variables.CustomizedDictVariable, self.objvar).call_method( tx, "__setitem__", args, kwargs ) else: unimplemented(f"non-function or method super: {inner_fn}") class UnknownVariable(VariableTracker): """ It could be anything! """ class DelayGraphBreakVariable(UnknownVariable): """ Used to insert a dummy variable in the stack to do the graph break at CALL_FUNCTION. """ class ComptimeVariable(VariableTracker): """ This variable is special, it lets you execute arbitrary code at Dynamo compile time """ def reconstruct(self, codegen): raise NotImplementedError("comptime is special form") def var_getattr(self, tx, name: str) -> "VariableTracker": from ..comptime import comptime # To support the comptime.print_graph convenience accessors from .functions import UserFunctionVariable return UserFunctionVariable( getattr(comptime, name), source=AttrSource(self.source, name) ) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": from ..comptime import ComptimeContext # TODO: support an expression form as well assert not kwargs assert len(args) == 1 fn = args[0] if isinstance(fn, UserFunctionVariable): fn.get_function()(ComptimeContext(tx)) elif isinstance(fn, NestedUserFunctionVariable): # We have to manually bind the freevars ourselves code = fn.get_code() assert not fn.closure, ( "comptime function must not have free variables, " f"but these variables were free: {code.co_freevars}" ) func = types.FunctionType( code, fn.f_globals, fn.fn_name.as_python_constant(), tuple(fn.defaults.items) if fn.defaults else None, # We could automatically promote free variables into # ComptimeVar but this is confusing if you access # a free variable that we actually DO have the runtime # value for # tuple(make_cell(ComptimeVar(i)) for i in fn.closure.items) tuple(), ) func(ComptimeContext(tx)) else: raise RuntimeError(f"unsupported argument to comptime: {type(fn)}") return variables.ConstantVariable.create(None) class ClosureVariable(UnknownVariable): def __init__(self, name, **kwargs): super().__init__(**kwargs) self.name = name def reconstruct(self, codegen): codegen.append_output(codegen.create_load_closure(self.name)) # closure variable created by an inlined function class InlinedClosureVariable(UnknownVariable): def __init__(self, name, **kwargs): super().__init__(**kwargs) self.name = name def reconstruct(self, codegen): codegen.append_output(codegen.create_load_closure(self.name)) class NewCellVariable(VariableTracker): def __init__(self, **kwargs): super().__init__(**kwargs) class NewGlobalVariable(VariableTracker): def __init__(self, **kwargs): super().__init__(**kwargs) class InspectSignatureVariable(VariableTracker): """represents inspect.signature(...)""" @staticmethod def create(callable, **kwargs): if kwargs: unimplemented(f"inspect.signature with {kwargs}") return InspectSignatureVariable(callable) def __init__(self, inspected: VariableTracker, **kwargs): super().__init__(**kwargs) self.inspected = inspected def var_getattr(self, tx, name: str) -> "VariableTracker": if name == "parameters": return variables.ConstDictVariable( { variables.ConstantVariable.create(name): InspectParameterVariable() for name in self.inspected.inspect_parameter_names() }, user_cls=dict, ) return super().var_getattr(tx, name) class InspectParameterVariable(VariableTracker): """This is not implemented, if used will graph break.""" pass def produce_trampoline_autograd_apply(fn_cls): def trampoline_autograd_apply(*args, **kwargs): return fn_cls.apply(*args, **kwargs) trampoline_autograd_apply._origin = produce_trampoline_autograd_apply return trampoline_autograd_apply class AutogradFunctionVariable(VariableTracker): """represents a torch.autograd.Function subclass""" def __init__(self, fn_cls, **kwargs): super().__init__(**kwargs) self.fn_cls = fn_cls def call_apply(self, tx, args, kwargs): requires_grad = False def visit(node): nonlocal requires_grad if isinstance(node, variables.TensorVariable): if node.requires_grad is not False: requires_grad = True if isinstance(node, variables.NNModuleVariable): if node.is_training(tx): requires_grad = True return node VariableTracker.apply(visit, (args, kwargs)) if ( requires_grad and torch.is_grad_enabled() and config.capture_autograd_function ): # Note - this is the same check used in autograd/function.py, except inverted. # If we want to support functorch transforms here, we will need to enable this. if ( self.fn_cls.setup_context != torch.autograd.function._SingleLevelFunction.setup_context ): unimplemented( "NYI - autograd.Function with custom setup_context method" ) vjp_fn = self.fn_cls.vjp # type: ignore[attr-defined] if vjp_fn is not torch.autograd.Function.vjp: unimplemented("NYI - User defind vjp") jvp_fn = self.fn_cls.jvp # type: ignore[attr-defined] if jvp_fn is not torch.autograd.Function.jvp: unimplemented("NYI - User defind jvp") from .higher_order_ops import AutogradFunctionApplyVariable source = self.source if source is None: source = AttrSource( tx.import_source(self.fn_cls.__module__), self.fn_cls.__name__ ) return AutogradFunctionApplyVariable( self.fn_cls.forward, self.fn_cls.backward, source, source=AttrSource(source, member="apply"), ).call_function(tx, args, kwargs) if self.source: source = AttrSource(self.source, "forward") else: source = None fn = self.fn_cls.forward ctx = AutogradFunctionContextVariable.create(tx) args = [ctx, *args] if isinstance(fn, types.FunctionType): return variables.UserFunctionVariable(fn, source=source).call_function( tx, args, kwargs ) elif isinstance(fn, types.MethodType): return variables.UserMethodVariable( fn.__func__, variables.UserDefinedClassVariable(self.fn_cls), source=source, ).call_function(tx, args, kwargs) else: unimplemented( f"non-function or method in subclass of torch.autograd.Function: {fn}" ) def call_function(self, tx, args, kwargs): return AutogradFunctionVariable(self.fn_cls) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ): from ..trace_rules import is_callable_allowed from .builder import wrap_fx_proxy if name == "apply": if is_callable_allowed(self.fn_cls): trampoline_autograd_apply = produce_trampoline_autograd_apply( self.fn_cls ) return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", trampoline_autograd_apply, *proxy_args_kwargs(args, kwargs), ), ) else: return self.call_apply(tx, args, kwargs) else: unimplemented(f"Unsupported method: {name}") @dataclasses.dataclass class SavedTensorBox: tensors: List[VariableTracker] = dataclasses.field(default_factory=list) class AutogradFunctionContextVariable(UserDefinedObjectVariable): """ Tracks an autograd.Function() context using mutation tracking in side_effects.py """ _nonvar_fields = { "proxy", "inference", *UserDefinedObjectVariable._nonvar_fields, } def __init__( self, value, value_type=None, inference=False, proxy=None, saved_tensors=None, **kwargs, ): super().__init__(value=value, value_type=value_type, **kwargs) self.inference = inference self.proxy = proxy self.saved_tensors = saved_tensors @staticmethod def create(tx): proxy = tx.output.create_proxy( "call_function", torch.autograd.function.FunctionCtx, tuple(), {} ) out = tx.output.side_effects.track_object_new( None, torch.autograd.function.FunctionCtx, functools.partial( AutogradFunctionContextVariable, inference=True, proxy=proxy, saved_tensors=SavedTensorBox(), ), {}, ) proxy.node.meta["example_value"] = out.value return out def as_proxy(self): if self.proxy is None: unimplemented("proxy not set") return self.proxy def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if name != "save_for_backward": unimplemented(f"autograd.Function context method: {name}") if self.saved_tensors is None: unimplemented( "save_for_backward only supported on a newly constructed FunctionCtx" ) if not self.inference: assert self.source and not kwargs tx.output.side_effects.track_save_for_backward(self, args) # In eager mode, multiple calls to .save_for_backward() will overwrite previous calls. if len(self.saved_tensors.tensors) > 0: self.saved_tensors.tensors = [] for arg in args: self.saved_tensors.tensors.append(arg) return variables.ConstantVariable.create(None) def var_getattr(self, tx, name): if name == "save_for_backward": return LambdaVariable( lambda *args, **kwargs: self.call_method(tx, name, args, kwargs) ) if name == "saved_tensors" and self.saved_tensors is not None: return variables.TupleVariable(list(self.saved_tensors.tensors)) return super().var_getattr(tx, name) class LambdaVariable(VariableTracker): def __init__(self, fn, **kwargs): super().__init__(**kwargs) self.fn = fn def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": return self.fn(*args, **kwargs) class GetAttrVariable(VariableTracker): def __init__(self, obj, name, **kwargs): super().__init__(**kwargs) assert isinstance(obj, VariableTracker) assert isinstance(name, str) self.obj = obj self.name = name def __str__(self): return f"{self.__class__.__name__}({self.obj}, {self.name})" @staticmethod def create_getattr_proxy(base_proxy: torch.fx.Proxy, attr): return getattr(base_proxy, attr) def as_proxy(self): return GetAttrVariable.create_getattr_proxy(self.obj.as_proxy(), self.name) def const_getattr(self, tx, name): if not isinstance(self.obj, variables.NNModuleVariable): raise NotImplementedError() step1 = tx.output.get_submodule(self.obj.module_key) if self.name not in step1.__dict__: raise NotImplementedError() step2 = inspect.getattr_static(step1, self.name) if name not in step2.__dict__: raise NotImplementedError() return inspect.getattr_static(step2, name) def reconstruct(self, codegen): codegen(self.obj) codegen.extend_output(codegen.create_load_attrs(self.name)) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": return self.obj.call_method(tx, self.name, args, kwargs) class MethodWrapperVariable(VariableTracker): def __init__(self, method_wrapper, **kwargs): super().__init__(**kwargs) self.method_wrapper = method_wrapper def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": if is_tensor_base_attr_getter(self.method_wrapper) and isinstance( args[0], variables.TensorVariable ): assert len(args) == 1 and len(kwargs) == 0 return args[0].var_getattr(tx, self.method_wrapper.__self__.__name__) super().call_function(tx, args, kwargs) def is_python_constant(self): return True def as_python_constant(self): return self.method_wrapper class GetSetDescriptorVariable(VariableTracker): def __init__(self, desc, **kwargs): super().__init__(**kwargs) self.desc = desc def var_getattr(self, tx, name): if name == "__get__" and self.source: from .builder import VariableBuilder return VariableBuilder(tx, AttrSource(self.source, "__get__"))( self.desc.__get__ ) else: return super().var_getattr(tx, name) def is_python_constant(self): return True def as_python_constant(self): return self.desc class PythonModuleVariable(VariableTracker): def __init__(self, value: types.ModuleType, **kwargs): super().__init__(**kwargs) self.value = value self.is_torch = self.value is torch or self.value.__name__.startswith("torch.") def python_type(self): return types.ModuleType def as_python_constant(self): return self.value def __repr__(self): return f"PythonModuleVariable({self.value})" def call_hasattr(self, tx, name): if self.is_torch: result = hasattr(self.value, name) return variables.ConstantVariable.create(result) return super().call_hasattr(tx, name) class TypingVariable(VariableTracker): def __init__(self, value, **kwargs): super().__init__(**kwargs) self.value = value def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if name == "__getitem__" and len(args) == 1: return variables.ConstantVariable.create( self.value[args[0].as_python_constant()], ) unimplemented("typing") def python_type(self): return type(self.value) def as_python_constant(self): return self.value @functools.lru_cache(maxsize=1) def get_np_to_tnp_map(): from ..utils import NP_TO_TNP_MODULE np_fn_to_tnp_fn = {} for np_mod, tnp_mod in NP_TO_TNP_MODULE.items(): for fn_name, tnp_fn in tnp_mod.__dict__.items(): if callable(tnp_fn): # some internal details do leak from tnp # which are not part of numpy API. if np_fn := getattr(np_mod, fn_name, None): np_fn_to_tnp_fn[np_fn] = tnp_fn return np_fn_to_tnp_fn class NumpyVariable(VariableTracker): """ Wrapper around `numpy.*`. Currently, is able to trace a small subset of numpy functions as well as numpy dtypes. """ constant_fold_functions = (tnp.issubdtype,) def __init__(self, value, **kwargs): super().__init__(**kwargs) self.value = value @classmethod def can_constant_fold_through(cls, fn): mod = fn.__module__.split(".") assert len(mod) >= 2 and mod[:2] == ["torch", "_numpy"] return fn in cls.constant_fold_functions def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": if not config.trace_numpy: unimplemented(f"numpy.{self.value}()") from ..utils import numpy_to_tensor_wrapper from .tensor import NumpyNdarrayVariable # lookup method name in tnp. Things like np.dtype(float) are not supported yet. if self.value.__name__ == "dtype": unimplemented( f"numpy dtype function is not supported yet. Got type {type(self.value)}." ) else: # We are dealing with a callable. func = get_np_to_tnp_map().get(self.value) if func is None: unimplemented( f"Can't find numpy function {self.value} in torch._numpy. " " Please file an issue to request support for this function." ) if ( func.__module__ == "torch._numpy.random" and config.use_numpy_random_stream ): msg = f"delegate '{func.__qualname__}' to NumPy itself via " msg += f"confg.use_numpy_random_stream={config.use_numpy_random_stream}" unimplemented(msg) args, kwargs = NumpyNdarrayVariable.patch_args(func.__name__, args, kwargs) constant_args = check_constant_args(args, kwargs) unspec_python_args = check_unspec_python_args(args, kwargs) if self.can_constant_fold_through(func) and ( constant_args or unspec_python_args ): # constant fold return variables.ConstantVariable.create( self.as_python_constant()( *[x.as_python_constant() for x in args], **{k: v.as_python_constant() for k, v in kwargs.items()}, ), ) # TODO Add all the functions that go from constants to constants to can_constant_fold_through proxy = tx.output.create_proxy( "call_function", numpy_to_tensor_wrapper(func), *proxy_args_kwargs(args, kwargs), ) return NumpyNdarrayVariable.create(tx, proxy) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": unimplemented("numpy") def python_type(self): return type(self.value) def as_python_constant(self): return self.value def as_proxy(self): if config.trace_numpy and isinstance(self.value, type): # This handles numpy dtype attributes such as np.float32 # We return a string as we don't want to serialize non-PyTorch objects in the output FX graph # In torch/_numpy we normalize strings to their dtypes when the input is a dtype, as NumPy does return self.value.__name__ return super().as_proxy() # Used to keep track of NULLs pushed on the stack for Python 3.11 function calls class NullVariable(VariableTracker): def __init__(self, **kwargs): super().__init__(**kwargs) def __str__(self): return "NullVariable" def reconstruct(self, codegen): if sys.version_info < (3, 11): unimplemented("cannot reconstruct NullVariable in < Python 3.11") codegen.append_output(create_instruction("PUSH_NULL")) class DeletedVariable(VariableTracker): """Marker used to implement delattr()""" class StringFormatVariable(VariableTracker): """ Represents a call to str.format(), we delay calling format until after the graph. """ _nonvar_fields = {"format_string", *VariableTracker._nonvar_fields} @classmethod def create(cls, format_string, sym_args, sym_kwargs): if all( x.is_python_constant() for x in itertools.chain(sym_args, sym_kwargs.values()) ): return variables.ConstantVariable.create( format_string.format( *[v.as_python_constant() for v in sym_args], **{k: v.as_python_constant() for k, v in sym_kwargs.items()}, ) ) return cls(format_string, list(sym_args), dict(sym_kwargs)) def __init__(self, format_string, sym_args, sym_kwargs, **kwargs): super().__init__(**kwargs) assert isinstance(format_string, str) self.format_string = format_string self.sym_args = sym_args self.sym_kwargs = sym_kwargs def __repr__(self): return f"{self.__class__.__name__}({self.format_string!r}, {self.sym_args!r}, {self.sym_kwargs!r})" def reconstruct(self, codegen): if sys.version_info >= (3, 11): codegen.append_output(create_instruction("PUSH_NULL")) codegen.append_output(codegen.create_load_const(self.format_string)) codegen.append_output(codegen.create_load_attr("format")) codegen(variables.TupleVariable(self.sym_args)) kwargs = { variables.ConstantVariable.create(k): v for k, v in self.sym_kwargs.items() } codegen(variables.ConstDictVariable(kwargs)) codegen.append_output(create_instruction("CALL_FUNCTION_EX", arg=1)) class DebuggingVariable(VariableTracker): """ Represents a call to a debugging function like print(), or something registered to config.reorderable_logging_functions. """ def __init__(self, value, **kwargs): super().__init__(**kwargs) self.value = value @staticmethod def is_reorderable_logging_function(obj): return ( callable(obj) and isinstance(obj, (types.FunctionType, types.BuiltinFunctionType)) and obj in torch._dynamo.config.reorderable_logging_functions ) def call_function(self, tx, args, kwargs): if tx.export: # For export cases, we can just make debugging functions no-ops return if not self.can_reorder_logs(self.value, args, kwargs): unimplemented( f"Reordering debugging function {self.value} " f"with inputs {args} {kwargs} is not yet implemented." ) tx.debug_locals.append((self, list(args))) def reconstruct(self, codegen): return self.source.reconstruct(codegen) @staticmethod def can_reorder_logs(fn, args, kwargs) -> True: """ Run some additional checks for what sort of function calls can we actually reorder. """ allowed_input_types = ( variables.TensorVariable, variables.ConstantVariable, StringFormatVariable, ) flat_args = pytree.tree_leaves([args, kwargs]) for arg in flat_args: if not isinstance(arg, allowed_input_types): return False return True