from typing import List from torch.ao.quantization.pt2e.utils import _is_sym_size_node from torch.ao.quantization.quantizer.quantizer import QuantizationAnnotation from torch.fx import Node def _annotate_input_qspec_map(node: Node, input_node: Node, qspec): quantization_annotation = node.meta.get( "quantization_annotation", QuantizationAnnotation() ) if quantization_annotation.input_qspec_map is None: quantization_annotation.input_qspec_map = {} quantization_annotation.input_qspec_map[input_node] = qspec node.meta["quantization_annotation"] = quantization_annotation def _annotate_output_qspec(node: Node, qspec): quantization_annotation = node.meta.get( "quantization_annotation", QuantizationAnnotation() ) quantization_annotation.output_qspec = qspec node.meta["quantization_annotation"] = quantization_annotation def _node_only_used_for_sym_size(node: Node, partition_nodes: List[Node]): """ This utility is used to handle cases when dynami_shape=True tracing leads to symint nodes in the pattern of linear module. In those cases, we need to distinguish between the nodes that are in input for just extracting value of some dimentions (and symint nodes) vs. the one that is activation. For example: graph(x, y, weight): size_0 = torch.ops.aten.sym_size([x], [0]) size_1 = torch.ops.aten.sym_size([y], [1]) view_size = size_0 * size_1 size_3 = torch.ops.aten.sym_size([x], [2]) vie_out = torch.ops.aten.view(x, [view_size, size_3]) return mm(view_out, weight) In the example above y node is not actual input. It exist only to extract size_1 """ if _is_sym_size_node(node): return True return all( ((user not in partition_nodes) or _is_sym_size_node(user)) for user in node.users )