# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "AQLM (Additive Quantization of Language Model) integration file" from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available if is_torch_available(): import torch.nn as nn def replace_with_aqlm_linear( model, quantization_config=None, linear_weights_not_to_quantize=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`AqlmConfig`): The quantization config object that contains the quantization parameters. linear_weights_not_to_quantize (`list[str]`, *optional*): A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be converted. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ if not is_aqlm_available(): raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`") if not is_accelerate_available(): raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`") if linear_weights_not_to_quantize is None: linear_weights_not_to_quantize = [] from accelerate import init_empty_weights from aqlm import QuantizedLinear for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, nn.Linear): # Check if the current key is not in the `linear_weights_not_to_quantize` if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize: with init_empty_weights(): in_features = module.in_features out_features = module.out_features model._modules[name] = QuantizedLinear( in_features, out_features, bias=module.bias is not None, in_group_size=quantization_config.in_group_size, out_group_size=quantization_config.out_group_size, num_codebooks=quantization_config.num_codebooks, nbits_per_codebook=quantization_config.nbits_per_codebook, ) has_been_replaced = True # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = replace_with_aqlm_linear( module, quantization_config=quantization_config, linear_weights_not_to_quantize=linear_weights_not_to_quantize, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced