# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import is_torch_available if is_torch_available(): import torch def replace_with_quanto_layers( model, quantization_config=None, modules_to_not_convert=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with Quanto quantized layers. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`AqlmConfig`, defaults to `None`): The quantization config object that contains the quantization parameters. modules_to_not_convert (`list`, *optional*, defaults to `None`): A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be converted. current_key_name (`list`, *optional*, defaults to `None`): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*, defaults to `None`): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ from accelerate import init_empty_weights from quanto import QLayerNorm, QLinear, qfloat8, qint2, qint4, qint8 w_mapping = {"float8": qfloat8, "int8": qint8, "int4": qint4, "int2": qint2} a_mapping = {None: None, "float8": qfloat8, "int8": qint8} if modules_to_not_convert is None: modules_to_not_convert = [] for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): with init_empty_weights(): if isinstance(module, torch.nn.Linear): model._modules[name] = QLinear( in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=module.weight.dtype, weights=w_mapping[quantization_config.weights], activations=a_mapping[quantization_config.activations], ) model._modules[name].requires_grad_(False) has_been_replaced = True elif isinstance(module, torch.nn.LayerNorm): if quantization_config.activations is not None: model._modules[name] = QLayerNorm( module.normalized_shape, module.eps, module.elementwise_affine, module.bias is not None, activations=a_mapping[quantization_config.activations], ) has_been_replaced = True if len(list(module.children())) > 0: _, has_been_replaced = replace_with_quanto_layers( module, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced