# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch.utils.data import DataLoader from ..utils import is_torch_xla_available def tpu_spmd_dataloader(dataloader: DataLoader): if is_torch_xla_available(): import torch_xla.distributed.parallel_loader as pl assert isinstance( dataloader, pl.MpDeviceLoader ), "The dataloader must be a `torch_xla.distributed.parallel_loader.MpDeviceLoader`." # This is to support PyTorch/XLA FSDP via SPMD. # Here we shard the input data's 0th dim across the fsdp axis. import torch_xla.distributed.spmd as xs sharding_spec = xs.ShardingSpec(xs.get_global_mesh(), ("fsdp", None)) dataloader._parallel_loader_kwargs["input_sharding"] = sharding_spec return dataloader else: return dataloader