from ... import PretrainedConfig from ..deprecated._archive_maps import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class NezhaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nezha [sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, optional, defaults to 21128): Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`NezhaModel`]. hidden_size (`int`, optional, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, optional, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, optional, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, optional, defaults to 3072): The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, optional, defaults to "gelu"): The non-linear activation function (function or string) in the encoder and pooler. hidden_dropout_prob (`float`, optional, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, optional, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, optional, defaults to 2): The vocabulary size of the *token_type_ids* passed into [`NezhaModel`]. initializer_range (`float`, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, optional, defaults to 1e-12): The epsilon used by the layer normalization layers. classifier_dropout (`float`, optional, defaults to 0.1): The dropout ratio for attached classifiers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. Example: ```python >>> from transformers import NezhaConfig, NezhaModel >>> # Initializing an Nezha configuration >>> configuration = NezhaConfig() >>> # Initializing a model (with random weights) from the Nezha-base style configuration model >>> model = NezhaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "nezha" def __init__( self, vocab_size=21128, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, max_relative_position=64, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, classifier_dropout=0.1, pad_token_id=0, bos_token_id=2, eos_token_id=3, use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_relative_position = max_relative_position self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.classifier_dropout = classifier_dropout self.use_cache = use_cache