# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.from typing import List, Union from typing import List, Union from ..utils import is_torch_available from .base import Pipeline if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING from ..models.speecht5.modeling_speecht5 import SpeechT5HifiGan DEFAULT_VOCODER_ID = "microsoft/speecht5_hifigan" class TextToAudioPipeline(Pipeline): """ Text-to-audio generation pipeline using any `AutoModelForTextToWaveform` or `AutoModelForTextToSpectrogram`. This pipeline generates an audio file from an input text and optional other conditional inputs. Example: ```python >>> from transformers import pipeline >>> pipe = pipeline(model="suno/bark-small") >>> output = pipe("Hey it's HuggingFace on the phone!") >>> audio = output["audio"] >>> sampling_rate = output["sampling_rate"] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) You can specify parameters passed to the model by using [`TextToAudioPipeline.__call__.forward_params`] or [`TextToAudioPipeline.__call__.generate_kwargs`]. Example: ```python >>> from transformers import pipeline >>> music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") >>> # diversify the music generation by adding randomness with a high temperature and set a maximum music length >>> generate_kwargs = { ... "do_sample": True, ... "temperature": 0.7, ... "max_new_tokens": 35, ... } >>> outputs = music_generator("Techno music with high melodic riffs", generate_kwargs=generate_kwargs) ``` This pipeline can currently be loaded from [`pipeline`] using the following task identifiers: `"text-to-speech"` or `"text-to-audio"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-to-speech). """ def __init__(self, *args, vocoder=None, sampling_rate=None, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError("The TextToAudioPipeline is only available in PyTorch.") self.vocoder = None if self.model.__class__ in MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING.values(): self.vocoder = ( SpeechT5HifiGan.from_pretrained(DEFAULT_VOCODER_ID).to(self.model.device) if vocoder is None else vocoder ) self.sampling_rate = sampling_rate if self.vocoder is not None: self.sampling_rate = self.vocoder.config.sampling_rate if self.sampling_rate is None: # get sampling_rate from config and generation config config = self.model.config gen_config = self.model.__dict__.get("generation_config", None) if gen_config is not None: config.update(gen_config.to_dict()) for sampling_rate_name in ["sample_rate", "sampling_rate"]: sampling_rate = getattr(config, sampling_rate_name, None) if sampling_rate is not None: self.sampling_rate = sampling_rate def preprocess(self, text, **kwargs): if isinstance(text, str): text = [text] if self.model.config.model_type == "bark": # bark Tokenizer is called with BarkProcessor which uses those kwargs new_kwargs = { "max_length": self.model.generation_config.semantic_config.get("max_input_semantic_length", 256), "add_special_tokens": False, "return_attention_mask": True, "return_token_type_ids": False, "padding": "max_length", } # priority is given to kwargs new_kwargs.update(kwargs) kwargs = new_kwargs output = self.tokenizer(text, **kwargs, return_tensors="pt") return output def _forward(self, model_inputs, **kwargs): # we expect some kwargs to be additional tensors which need to be on the right device kwargs = self._ensure_tensor_on_device(kwargs, device=self.device) forward_params = kwargs["forward_params"] generate_kwargs = kwargs["generate_kwargs"] if self.model.can_generate(): # we expect some kwargs to be additional tensors which need to be on the right device generate_kwargs = self._ensure_tensor_on_device(generate_kwargs, device=self.device) # generate_kwargs get priority over forward_params forward_params.update(generate_kwargs) output = self.model.generate(**model_inputs, **forward_params) else: if len(generate_kwargs): raise ValueError( f"""You're using the `TextToAudioPipeline` with a forward-only model, but `generate_kwargs` is non empty. For forward-only TTA models, please use `forward_params` instead of of `generate_kwargs`. For reference, here are the `generate_kwargs` used here: {generate_kwargs.keys()}""" ) output = self.model(**model_inputs, **forward_params)[0] if self.vocoder is not None: # in that case, the output is a spectrogram that needs to be converted into a waveform output = self.vocoder(output) return output def __call__(self, text_inputs: Union[str, List[str]], **forward_params): """ Generates speech/audio from the inputs. See the [`TextToAudioPipeline`] documentation for more information. Args: text_inputs (`str` or `List[str]`): The text(s) to generate. forward_params (`dict`, *optional*): Parameters passed to the model generation/forward method. `forward_params` are always passed to the underlying model. generate_kwargs (`dict`, *optional*): The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a complete overview of generate, check the [following guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation). `generate_kwargs` are only passed to the underlying model if the latter is a generative model. Return: A `dict` or a list of `dict`: The dictionaries have two keys: - **audio** (`np.ndarray` of shape `(nb_channels, audio_length)`) -- The generated audio waveform. - **sampling_rate** (`int`) -- The sampling rate of the generated audio waveform. """ return super().__call__(text_inputs, **forward_params) def _sanitize_parameters( self, preprocess_params=None, forward_params=None, generate_kwargs=None, ): params = { "forward_params": forward_params if forward_params else {}, "generate_kwargs": generate_kwargs if generate_kwargs else {}, } if preprocess_params is None: preprocess_params = {} postprocess_params = {} return preprocess_params, params, postprocess_params def postprocess(self, waveform): output_dict = {} if isinstance(waveform, dict): waveform = waveform["waveform"] elif isinstance(waveform, tuple): waveform = waveform[0] output_dict["audio"] = waveform.cpu().float().numpy() output_dict["sampling_rate"] = self.sampling_rate return output_dict