# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Torch utilities for the Trainer class. """ import copy import datetime import io import json import math import os import sys import warnings from collections.abc import Mapping from contextlib import contextmanager from dataclasses import dataclass, field from logging import StreamHandler from typing import Any, Dict, Iterator, List, Optional, Union import numpy as np import torch import torch.distributed as dist from torch import nn from torch.utils.data import Dataset, IterableDataset, RandomSampler, Sampler from torch.utils.data.distributed import DistributedSampler from .integrations.deepspeed import is_deepspeed_zero3_enabled from .tokenization_utils_base import BatchEncoding from .utils import ( is_sagemaker_mp_enabled, is_torch_available, is_torch_xla_available, is_training_run_on_sagemaker, logging, ) if is_training_run_on_sagemaker(): logging.add_handler(StreamHandler(sys.stdout)) if is_torch_xla_available(): import torch_xla.core.xla_model as xm if is_torch_available(): from .pytorch_utils import is_torch_greater_or_equal_than_2_0 if is_torch_greater_or_equal_than_2_0: from torch.optim.lr_scheduler import LRScheduler else: from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # this is used to suppress an undesired warning emitted by pytorch versions 1.4.2-1.7.0 try: from torch.optim.lr_scheduler import SAVE_STATE_WARNING except ImportError: SAVE_STATE_WARNING = "" logger = logging.get_logger(__name__) def get_dataloader_sampler(dataloader): if hasattr(dataloader, "batch_sampler") and dataloader.batch_sampler is not None: return get_dataloader_sampler(dataloader.batch_sampler) elif hasattr(dataloader, "sampler"): return dataloader.sampler def atleast_1d(tensor_or_array: Union[torch.Tensor, np.ndarray]): if isinstance(tensor_or_array, torch.Tensor): if hasattr(torch, "atleast_1d"): tensor_or_array = torch.atleast_1d(tensor_or_array) elif tensor_or_array.ndim < 1: tensor_or_array = tensor_or_array[None] else: tensor_or_array = np.atleast_1d(tensor_or_array) return tensor_or_array def torch_pad_and_concatenate(tensor1, tensor2, padding_index=-100): """Concatenates `tensor1` and `tensor2` on first axis, applying padding on the second if necessary.""" tensor1 = atleast_1d(tensor1) tensor2 = atleast_1d(tensor2) if len(tensor1.shape) == 1 or tensor1.shape[1] == tensor2.shape[1]: return torch.cat((tensor1, tensor2), dim=0) # Let's figure out the new shape new_shape = (tensor1.shape[0] + tensor2.shape[0], max(tensor1.shape[1], tensor2.shape[1])) + tensor1.shape[2:] # Now let's fill the result tensor result = tensor1.new_full(new_shape, padding_index) result[: tensor1.shape[0], : tensor1.shape[1]] = tensor1 result[tensor1.shape[0] :, : tensor2.shape[1]] = tensor2 return result def numpy_pad_and_concatenate(array1, array2, padding_index=-100): """Concatenates `array1` and `array2` on first axis, applying padding on the second if necessary.""" array1 = atleast_1d(array1) array2 = atleast_1d(array2) if len(array1.shape) == 1 or array1.shape[1] == array2.shape[1]: return np.concatenate((array1, array2), axis=0) # Let's figure out the new shape new_shape = (array1.shape[0] + array2.shape[0], max(array1.shape[1], array2.shape[1])) + array1.shape[2:] # Now let's fill the result tensor result = np.full_like(array1, padding_index, shape=new_shape) result[: array1.shape[0], : array1.shape[1]] = array1 result[array1.shape[0] :, : array2.shape[1]] = array2 return result def nested_concat(tensors, new_tensors, padding_index=-100): """ Concat the `new_tensors` to `tensors` on the first dim and pad them on the second if needed. Works for tensors or nested list/tuples/dict of tensors. """ assert type(tensors) == type( new_tensors ), f"Expected `tensors` and `new_tensors` to have the same type but found {type(tensors)} and {type(new_tensors)}." if isinstance(tensors, (list, tuple)): return type(tensors)(nested_concat(t, n, padding_index=padding_index) for t, n in zip(tensors, new_tensors)) elif isinstance(tensors, torch.Tensor): return torch_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index) elif isinstance(tensors, Mapping): return type(tensors)( {k: nested_concat(t, new_tensors[k], padding_index=padding_index) for k, t in tensors.items()} ) elif isinstance(tensors, np.ndarray): return numpy_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index) else: raise TypeError(f"Unsupported type for concatenation: got {type(tensors)}") def find_batch_size(tensors): """ Find the first dimension of a tensor in a nested list/tuple/dict of tensors. """ if isinstance(tensors, (list, tuple)): for t in tensors: result = find_batch_size(t) if result is not None: return result elif isinstance(tensors, Mapping): for key, value in tensors.items(): result = find_batch_size(value) if result is not None: return result elif isinstance(tensors, torch.Tensor): return tensors.shape[0] if len(tensors.shape) >= 1 else None elif isinstance(tensors, np.ndarray): return tensors.shape[0] if len(tensors.shape) >= 1 else None def nested_numpify(tensors): "Numpify `tensors` (even if it's a nested list/tuple/dict of tensors)." if isinstance(tensors, (list, tuple)): return type(tensors)(nested_numpify(t) for t in tensors) if isinstance(tensors, Mapping): return type(tensors)({k: nested_numpify(t) for k, t in tensors.items()}) t = tensors.cpu() if t.dtype == torch.bfloat16: # As of Numpy 1.21.4, NumPy does not support bfloat16 (see # https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ). # Until Numpy adds bfloat16, we must convert float32. t = t.to(torch.float32) return t.numpy() def nested_detach(tensors): "Detach `tensors` (even if it's a nested list/tuple/dict of tensors)." if isinstance(tensors, (list, tuple)): return type(tensors)(nested_detach(t) for t in tensors) elif isinstance(tensors, Mapping): return type(tensors)({k: nested_detach(t) for k, t in tensors.items()}) return tensors.detach() def nested_xla_mesh_reduce(tensors, name): if is_torch_xla_available(): import torch_xla.core.xla_model as xm if isinstance(tensors, (list, tuple)): return type(tensors)(nested_xla_mesh_reduce(t, f"{name}_{i}") for i, t in enumerate(tensors)) if isinstance(tensors, Mapping): return type(tensors)( {k: nested_xla_mesh_reduce(t, f"{name}_{i}") for i, (k, t) in enumerate(tensors.items())} ) tensors = atleast_1d(tensors) return xm.mesh_reduce(name, tensors, torch.cat) else: raise ImportError("Torch xla must be installed to use `nested_xla_mesh_reduce`") def distributed_concat(tensor: Any, num_total_examples: Optional[int] = None) -> Any: try: if isinstance(tensor, (tuple, list)): return type(tensor)(distributed_concat(t, num_total_examples) for t in tensor) if isinstance(tensor, Mapping): return type(tensor)({k: distributed_concat(t, num_total_examples) for k, t in tensor.items()}) tensor = atleast_1d(tensor).contiguous() output_tensors = [tensor.clone() for _ in range(dist.get_world_size())] dist.all_gather(output_tensors, tensor) concat = torch.cat(output_tensors, dim=0) # truncate the dummy elements added by SequentialDistributedSampler if num_total_examples is not None: concat = concat[:num_total_examples] return concat except AssertionError: raise AssertionError("Not currently using distributed training") def distributed_broadcast_scalars( scalars: List[Union[int, float]], num_total_examples: Optional[int] = None, device: Optional[torch.device] = torch.device("cuda"), ) -> torch.Tensor: try: tensorized_scalar = torch.tensor(scalars).to(device) output_tensors = [tensorized_scalar.clone() for _ in range(dist.get_world_size())] dist.all_gather(output_tensors, tensorized_scalar) concat = torch.cat(output_tensors, dim=0) # truncate the dummy elements added by SequentialDistributedSampler if num_total_examples is not None: concat = concat[:num_total_examples] return concat except AssertionError: raise AssertionError("Not currently using distributed training") def reissue_pt_warnings(caught_warnings): # Reissue warnings that are not the SAVE_STATE_WARNING if len(caught_warnings) > 1: for w in caught_warnings: if w.category != UserWarning or w.message != SAVE_STATE_WARNING: warnings.warn(w.message, w.category) @contextmanager def torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. Args: local_rank (`int`): The rank of the local process. """ if local_rank not in [-1, 0]: dist.barrier() yield if local_rank == 0: dist.barrier() class DistributedSamplerWithLoop(DistributedSampler): """ Like a torch.utils.data.distributed.DistributedSampler` but loops at the end back to the beginning of the shuffled samples to make each process have a round multiple of batch_size samples. Args: dataset (`torch.utils.data.Dataset`): Dataset used for sampling. batch_size (`int`): The batch size used with this sampler kwargs (`Dict[str, Any]`, *optional*): All other keyword arguments passed to `DistributedSampler`. """ def __init__(self, dataset, batch_size, **kwargs): super().__init__(dataset, **kwargs) self.batch_size = batch_size def __iter__(self): indices = list(super().__iter__()) remainder = 0 if len(indices) % self.batch_size == 0 else self.batch_size - len(indices) % self.batch_size # DistributedSampler already added samples from the beginning to make the number of samples a round multiple # of the world size, so we skip those. start_remainder = 1 if self.rank < len(self.dataset) % self.num_replicas else 0 indices += indices[start_remainder : start_remainder + remainder] return iter(indices) class EvalLoopContainer: """ Container to store intermediate results of evaluation loop Args: do_nested_concat (`bool`, *optional*, defaults to `True`): If set to `True`, each iteration will recursively concatenate a new object containing tensors to the existing stored tensors, provided that the structure of the existing object and the new one are identical. If set to `False`, all newly added tensors will be stored in a list. padding_index (`int`, *optional*, defaults to -100): Value used to pad tensors of different shapes when `do_nested_concat=True`. """ def __init__(self, do_nested_concat: bool = True, padding_index: int = -100): self.do_nested_concat = do_nested_concat self.padding_index = padding_index self.tensors = None self.arrays = None def add(self, tensors) -> None: """Add tensors to the stored objects. If `do_nested_concat=True`, the tensors will be concatenated recursively.""" if self.tensors is None: self.tensors = tensors if self.do_nested_concat else [tensors] elif self.do_nested_concat: self.tensors = nested_concat(self.tensors, tensors, padding_index=self.padding_index) else: self.tensors.append(tensors) def to_cpu_and_numpy(self) -> None: """Move tensors in stored objects to CPU and convert them to numpy arrays.""" # Check if we have something to add, if not just return if self.tensors is None: return new_arrays = nested_numpify(self.tensors) if self.arrays is None: self.arrays = new_arrays elif self.do_nested_concat: self.arrays = nested_concat(self.arrays, new_arrays, padding_index=self.padding_index) else: self.arrays.extend(new_arrays) # reset device tensors after adding to cpu self.tensors = None def get_arrays(self): """Returns the numpified and moved to CPU stored objects.""" self.to_cpu_and_numpy() return self.arrays class SequentialDistributedSampler(Sampler): """ Distributed Sampler that subsamples indices sequentially, making it easier to collate all results at the end. Even though we only use this sampler for eval and predict (no training), which means that the model params won't have to be synced (i.e. will not hang for synchronization even if varied number of forward passes), we still add extra samples to the sampler to make it evenly divisible (like in `DistributedSampler`) to make it easy to `gather` or `reduce` resulting tensors at the end of the loop. """ def __init__(self, dataset, num_replicas=None, rank=None, batch_size=None): warnings.warn( "SequentialDistributedSampler is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank num_samples = len(self.dataset) # Add extra samples to make num_samples a multiple of batch_size if passed if batch_size is not None: self.num_samples = int(math.ceil(num_samples / (batch_size * num_replicas))) * batch_size else: self.num_samples = int(math.ceil(num_samples / num_replicas)) self.total_size = self.num_samples * self.num_replicas self.batch_size = batch_size def __iter__(self): indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert ( len(indices) == self.total_size ), f"Indices length {len(indices)} and total size {self.total_size} mismatched" # subsample indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples] assert ( len(indices) == self.num_samples ), f"Indices length {len(indices)} and sample number {self.num_samples} mismatched" return iter(indices) def __len__(self): return self.num_samples def get_tpu_sampler(dataset: torch.utils.data.Dataset, batch_size: int): if xm.xrt_world_size() <= 1: return RandomSampler(dataset) return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()) def nested_new_like(arrays, num_samples, padding_index=-100): """Create the same nested structure as `arrays` with a first dimension always at `num_samples`.""" if isinstance(arrays, (list, tuple)): return type(arrays)(nested_new_like(x, num_samples) for x in arrays) return np.full_like(arrays, padding_index, shape=(num_samples, *arrays.shape[1:])) def expand_like(arrays, new_seq_length, padding_index=-100): """Expand the `arrays` so that the second dimension grows to `new_seq_length`. Uses `padding_index` for padding.""" result = np.full_like(arrays, padding_index, shape=(arrays.shape[0], new_seq_length) + arrays.shape[2:]) result[:, : arrays.shape[1]] = arrays return result def nested_truncate(tensors, limit): "Truncate `tensors` at `limit` (even if it's a nested list/tuple/dict of tensors)." if isinstance(tensors, (list, tuple)): return type(tensors)(nested_truncate(t, limit) for t in tensors) if isinstance(tensors, Mapping): return type(tensors)({k: nested_truncate(t, limit) for k, t in tensors.items()}) return tensors[:limit] class DistributedTensorGatherer: """ A class responsible for properly gathering tensors (or nested list/tuple of tensors) on the CPU by chunks. If our dataset has 16 samples with a batch size of 2 on 3 processes and we gather then transfer on CPU at every step, our sampler will generate the following indices: `[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1]` to get something of size a multiple of 3 (so that each process gets the same dataset length). Then process 0, 1 and 2 will be responsible of making predictions for the following samples: - P0: `[0, 1, 2, 3, 4, 5]` - P1: `[6, 7, 8, 9, 10, 11]` - P2: `[12, 13, 14, 15, 0, 1]` The first batch treated on each process will be - P0: `[0, 1]` - P1: `[6, 7]` - P2: `[12, 13]` So if we gather at the end of the first batch, we will get a tensor (nested list/tuple of tensor) corresponding to the following indices: `[0, 1, 6, 7, 12, 13]` If we directly concatenate our results without taking any precautions, the user will then get the predictions for the indices in this order at the end of the prediction loop: `[0, 1, 6, 7, 12, 13, 2, 3, 8, 9, 14, 15, 4, 5, 10, 11, 0, 1]` For some reason, that's not going to roll their boat. This class is there to solve that problem. Args: world_size (`int`): The number of processes used in the distributed training. num_samples (`int`): The number of samples in our dataset. make_multiple_of (`int`, *optional*): If passed, the class assumes the datasets passed to each process are made to be a multiple of this argument (by adding samples). padding_index (`int`, *optional*, defaults to -100): The padding index to use if the arrays don't all have the same sequence length. """ def __init__(self, world_size, num_samples, make_multiple_of=None, padding_index=-100): warnings.warn( "DistributedTensorGatherer is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.world_size = world_size self.num_samples = num_samples total_size = world_size if make_multiple_of is None else world_size * make_multiple_of self.total_samples = int(np.ceil(num_samples / total_size)) * total_size self.process_length = self.total_samples // world_size self._storage = None self._offsets = None self.padding_index = padding_index def add_arrays(self, arrays): """ Add `arrays` to the internal storage, Will initialize the storage to the full size at the first arrays passed so that if we're bound to get an OOM, it happens at the beginning. """ if arrays is None: return if self._storage is None: self._storage = nested_new_like(arrays, self.total_samples, padding_index=self.padding_index) self._offsets = list(range(0, self.total_samples, self.process_length)) slice_len, self._storage = self._nested_set_tensors(self._storage, arrays) for i in range(self.world_size): self._offsets[i] += slice_len def _nested_set_tensors(self, storage, arrays): if isinstance(arrays, (list, tuple)): result = [self._nested_set_tensors(x, y) for x, y in zip(storage, arrays)] return result[0][0], type(arrays)(r[1] for r in result) assert ( arrays.shape[0] % self.world_size == 0 ), f"Arrays passed should all have a first dimension multiple of {self.world_size}, found {arrays.shape[0]}." slice_len = arrays.shape[0] // self.world_size for i in range(self.world_size): if len(arrays.shape) == 1: storage[self._offsets[i] : self._offsets[i] + slice_len] = arrays[i * slice_len : (i + 1) * slice_len] else: # Expand the array on the fly if needed. if len(storage.shape) > 1 and storage.shape[1] < arrays.shape[1]: storage = expand_like(storage, arrays.shape[1], padding_index=self.padding_index) storage[self._offsets[i] : self._offsets[i] + slice_len, : arrays.shape[1]] = arrays[ i * slice_len : (i + 1) * slice_len ] return slice_len, storage def finalize(self): """ Return the properly gathered arrays and truncate to the number of samples (since the sampler added some extras to get each process a dataset of the same length). """ if self._storage is None: return if self._offsets[0] != self.process_length: logger.warning("Not all data has been set. Are you sure you passed all values?") return nested_truncate(self._storage, self.num_samples) @dataclass class LabelSmoother: """ Adds label-smoothing on a pre-computed output from a Transformers model. Args: epsilon (`float`, *optional*, defaults to 0.1): The label smoothing factor. ignore_index (`int`, *optional*, defaults to -100): The index in the labels to ignore when computing the loss. """ epsilon: float = 0.1 ignore_index: int = -100 def __call__(self, model_output, labels, shift_labels=False): logits = model_output["logits"] if isinstance(model_output, dict) else model_output[0] if shift_labels: logits = logits[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() log_probs = -nn.functional.log_softmax(logits, dim=-1) if labels.dim() == log_probs.dim() - 1: labels = labels.unsqueeze(-1) padding_mask = labels.eq(self.ignore_index) # In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask # will ignore them in any case. labels = torch.clamp(labels, min=0) nll_loss = log_probs.gather(dim=-1, index=labels) # works for fp16 input tensor too, by internally upcasting it to fp32 smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32) nll_loss.masked_fill_(padding_mask, 0.0) smoothed_loss.masked_fill_(padding_mask, 0.0) # Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded): num_active_elements = padding_mask.numel() - padding_mask.long().sum() nll_loss = nll_loss.sum() / num_active_elements smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1]) return (1 - self.epsilon) * nll_loss + self.epsilon * smoothed_loss def get_length_grouped_indices(lengths, batch_size, mega_batch_mult=None, generator=None): """ Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar lengths. To do this, the indices are: - randomly permuted - grouped in mega-batches of size `mega_batch_mult * batch_size` - sorted by length in each mega-batch The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of maximum length placed first, so that an OOM happens sooner rather than later. """ # Default for mega_batch_mult: 50 or the number to get 4 megabatches, whichever is smaller. if mega_batch_mult is None: mega_batch_mult = min(len(lengths) // (batch_size * 4), 50) # Just in case, for tiny datasets if mega_batch_mult == 0: mega_batch_mult = 1 # We need to use torch for the random part as a distributed sampler will set the random seed for torch. indices = torch.randperm(len(lengths), generator=generator) megabatch_size = mega_batch_mult * batch_size megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)] megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches] # The rest is to get the biggest batch first. # Since each megabatch is sorted by descending length, the longest element is the first megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches] max_idx = torch.argmax(torch.tensor(megabatch_maximums)).item() # Switch to put the longest element in first position megabatches[0][0], megabatches[max_idx][0] = megabatches[max_idx][0], megabatches[0][0] return [i for megabatch in megabatches for i in megabatch] class LengthGroupedSampler(Sampler): r""" Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while keeping a bit of randomness. """ def __init__( self, batch_size: int, dataset: Optional[Dataset] = None, lengths: Optional[List[int]] = None, model_input_name: Optional[str] = None, generator=None, ): if dataset is None and lengths is None: raise ValueError("One of dataset and lengths must be provided.") self.batch_size = batch_size if lengths is None: model_input_name = model_input_name if model_input_name is not None else "input_ids" if ( not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding)) or model_input_name not in dataset[0] ): raise ValueError( "Can only automatically infer lengths for datasets whose items are dictionaries with an " f"'{model_input_name}' key." ) lengths = [len(feature[model_input_name]) for feature in dataset] elif isinstance(lengths, torch.Tensor): logger.info( "If lengths is a torch.Tensor, LengthGroupedSampler will be slow. Converting lengths to List[int]..." ) lengths = lengths.tolist() self.lengths = lengths self.generator = generator def __len__(self): return len(self.lengths) def __iter__(self): indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=self.generator) return iter(indices) class DistributedLengthGroupedSampler(DistributedSampler): r""" Distributed Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while keeping a bit of randomness. """ # Copied and adapted from PyTorch DistributedSampler. def __init__( self, batch_size: int, dataset: Optional[Dataset] = None, num_replicas: Optional[int] = None, rank: Optional[int] = None, seed: int = 0, drop_last: bool = False, lengths: Optional[List[int]] = None, model_input_name: Optional[str] = None, ): if dataset is None and lengths is None: raise ValueError("One of dataset and lengths must be provided.") if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.batch_size = batch_size self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.drop_last = drop_last if lengths is None: model_input_name = model_input_name if model_input_name is not None else "input_ids" if ( not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding)) or model_input_name not in dataset[0] ): raise ValueError( "Can only automatically infer lengths for datasets whose items are dictionaries with an " f"'{model_input_name}' key." ) lengths = [len(feature[model_input_name]) for feature in dataset] elif isinstance(lengths, torch.Tensor): logger.info( "If lengths is a torch.Tensor, DistributedLengthGroupedSampler will be slow. Converting lengths to" " List[int]..." ) lengths = lengths.tolist() self.lengths = lengths # If the dataset length is evenly divisible by # of replicas, then there # is no need to drop any data, since the dataset will be split equally. if self.drop_last and len(self.lengths) % self.num_replicas != 0: # Split to nearest available length that is evenly divisible. # This is to ensure each rank receives the same amount of data when # using this Sampler. self.num_samples = math.ceil((len(self.lengths) - self.num_replicas) / self.num_replicas) else: self.num_samples = math.ceil(len(self.lengths) / self.num_replicas) self.total_size = self.num_samples * self.num_replicas self.seed = seed def __iter__(self) -> Iterator: # Deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=g) if not self.drop_last: # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] else: # remove tail of data to make it evenly divisible. indices = indices[: self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank : self.total_size : self.num_replicas] assert len(indices) == self.num_samples return iter(indices) class ShardSampler(Sampler): """ Sampler that shards batches between several processes. Dispatches indices batch by batch: on 2 processes with batch size 4, the first two batches are `[0, 1, 2, 3, 4, 5, 6, 7]` and `[8, 9, 10, 11, 12, 13, 14, 15]`, which shard into `[0, 1, 2, 3]` and `[8, 9, 10, 11]` for GPU-0 and `[4, 5, 6, 7]` and `[12, 13, 14, 15]` for GPU-1. The sampler thus yields `[0, 1, 2, 3, 8, 9, 10, 11]` on GPU-0 and `[4, 5, 6, 7, 12, 13, 14, 15]` on GPU-1. """ def __init__( self, dataset: Dataset, batch_size: int = 1, drop_last: bool = False, num_processes: int = 1, process_index: int = 0, ): self.dataset = dataset self.batch_size = batch_size self.drop_last = drop_last self.num_processes = num_processes self.process_index = process_index self.total_batch_size = total_batch_size = batch_size * num_processes num_batches = len(dataset) // total_batch_size if drop_last else math.ceil(len(dataset) / total_batch_size) self.total_num_samples = num_batches * total_batch_size def __iter__(self): indices = list(range(len(self.dataset))) # Add extra samples to make it evenly divisible. While loop is there in the edge case we have a tiny dataset # and it needs to be done several times. while len(indices) < self.total_num_samples: indices += indices[: (self.total_num_samples - len(indices))] result = [] for batch_start in range(self.batch_size * self.process_index, self.total_num_samples, self.total_batch_size): result += indices[batch_start : batch_start + self.batch_size] return iter(result) def __len__(self): # Each shard only sees a fraction of total_num_samples. return self.total_num_samples // self.num_processes class IterableDatasetShard(IterableDataset): """ Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will always yield a number of samples that is a round multiple of the actual batch size (which is `batch_size x num_processes`). Depending on the value of the `drop_last` attribute, it will either stop the iteration at the first batch that would be too small or loop with indices from the beginning. On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]` with a batch size of 2: - the shard on process 0 will yield `[0, 1, 4, 5, 8, 9]` so will see batches `[0, 1]`, `[4, 5]`, `[8, 9]` - the shard on process 1 will yield `[2, 3, 6, 7, 10, 11]` so will see batches `[2, 3]`, `[6, 7]`, `[10, 11]` If your IterableDataset implements some randomization that needs to be applied the same way on all processes (for instance, a shuffling), you should use a `torch.Generator` in a `generator` attribute of the `dataset` to generate your random numbers and call the [`~trainer_pt_utils.IterableDatasetShard.set_epoch`] method of this object. It will set the seed of this `generator` to `seed + epoch` on all processes before starting the iteration. Alternatively, you can also implement a `set_epoch()` method in your iterable dataset to deal with this. Args: dataset (`torch.utils.data.IterableDataset`): The batch sampler to split in several shards. batch_size (`int`, *optional*, defaults to 1): The size of the batches per shard. drop_last (`bool`, *optional*, defaults to `False`): Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the beginning. num_processes (`int`, *optional*, defaults to 1): The number of processes running concurrently. process_index (`int`, *optional*, defaults to 0): The index of the current process. seed (`int`, *optional*, defaults to 0): A random seed that will be used for the random number generation in [`~trainer_pt_utils.IterableDatasetShard.set_epoch`]. """ def __init__( self, dataset: IterableDataset, batch_size: int = 1, drop_last: bool = False, num_processes: int = 1, process_index: int = 0, seed: int = 0, ): self.dataset = dataset self.batch_size = batch_size self.drop_last = drop_last self.num_processes = num_processes self.process_index = process_index self.seed = seed self.epoch = 0 self.num_examples = 0 def set_epoch(self, epoch): self.epoch = epoch if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def __iter__(self): self.num_examples = 0 if ( not hasattr(self.dataset, "set_epoch") and hasattr(self.dataset, "generator") and isinstance(self.dataset.generator, torch.Generator) ): self.dataset.generator.manual_seed(self.seed + self.epoch) real_batch_size = self.batch_size * self.num_processes process_slice = range(self.process_index * self.batch_size, (self.process_index + 1) * self.batch_size) first_batch = None current_batch = [] for element in self.dataset: self.num_examples += 1 current_batch.append(element) # Wait to have a full batch before yielding elements. if len(current_batch) == real_batch_size: for i in process_slice: yield current_batch[i] if first_batch is None: first_batch = current_batch.copy() current_batch = [] # Finished if drop_last is True, otherwise complete the last batch with elements from the beginning. if not self.drop_last and len(current_batch) > 0: if first_batch is None: first_batch = current_batch.copy() while len(current_batch) < real_batch_size: current_batch += first_batch for i in process_slice: yield current_batch[i] def __len__(self): # Will raise an error if the underlying dataset is not sized. if self.drop_last: return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size else: return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size # In order to keep `trainer.py` compact and easy to understand, place any secondary PT Trainer # helper methods here def _get_learning_rate(self): if self.is_deepspeed_enabled: # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may # not run for the first few dozen steps while loss scale is too large, and thus during # that time `get_last_lr` will fail if called during that warm up stage, so work around it: try: last_lr = self.lr_scheduler.get_last_lr()[0] except AssertionError as e: if "need to call step" in str(e): logger.warning("tried to get lr value before scheduler/optimizer started stepping, returning lr=0") last_lr = 0 else: raise else: if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): last_lr = self.optimizer.param_groups[0]["lr"] else: last_lr = self.lr_scheduler.get_last_lr()[0] if torch.is_tensor(last_lr): last_lr = last_lr.item() return last_lr def _secs2timedelta(secs): """ convert seconds to hh:mm:ss.msec, msecs rounded to 2 decimals """ msec = int(abs(secs - int(secs)) * 100) return f"{datetime.timedelta(seconds=int(secs))}.{msec:02d}" def metrics_format(self, metrics: Dict[str, float]) -> Dict[str, float]: """ Reformat Trainer metrics values to a human-readable format Args: metrics (`Dict[str, float]`): The metrics returned from train/evaluate/predict Returns: metrics (`Dict[str, float]`): The reformatted metrics """ metrics_copy = metrics.copy() for k, v in metrics_copy.items(): if "_mem_" in k: metrics_copy[k] = f"{ v >> 20 }MB" elif "_runtime" in k: metrics_copy[k] = _secs2timedelta(v) elif k == "total_flos": metrics_copy[k] = f"{ int(v) >> 30 }GF" elif isinstance(metrics_copy[k], float): metrics_copy[k] = round(v, 4) return metrics_copy def log_metrics(self, split, metrics): """ Log metrics in a specially formatted way Under distributed environment this is done only for a process with rank 0. Args: split (`str`): Mode/split name: one of `train`, `eval`, `test` metrics (`Dict[str, float]`): The metrics returned from train/evaluate/predictmetrics: metrics dict Notes on memory reports: In order to get memory usage report you need to install `psutil`. You can do that with `pip install psutil`. Now when this method is run, you will see a report that will include: : ``` init_mem_cpu_alloc_delta = 1301MB init_mem_cpu_peaked_delta = 154MB init_mem_gpu_alloc_delta = 230MB init_mem_gpu_peaked_delta = 0MB train_mem_cpu_alloc_delta = 1345MB train_mem_cpu_peaked_delta = 0MB train_mem_gpu_alloc_delta = 693MB train_mem_gpu_peaked_delta = 7MB ``` **Understanding the reports:** - the first segment, e.g., `train__`, tells you which stage the metrics are for. Reports starting with `init_` will be added to the first stage that gets run. So that if only evaluation is run, the memory usage for the `__init__` will be reported along with the `eval_` metrics. - the third segment, is either `cpu` or `gpu`, tells you whether it's the general RAM or the gpu0 memory metric. - `*_alloc_delta` - is the difference in the used/allocated memory counter between the end and the start of the stage - it can be negative if a function released more memory than it allocated. - `*_peaked_delta` - is any extra memory that was consumed and then freed - relative to the current allocated memory counter - it is never negative. When you look at the metrics of any stage you add up `alloc_delta` + `peaked_delta` and you know how much memory was needed to complete that stage. The reporting happens only for process of rank 0 and gpu 0 (if there is a gpu). Typically this is enough since the main process does the bulk of work, but it could be not quite so if model parallel is used and then other GPUs may use a different amount of gpu memory. This is also not the same under DataParallel where gpu0 may require much more memory than the rest since it stores the gradient and optimizer states for all participating GPUS. Perhaps in the future these reports will evolve to measure those too. The CPU RAM metric measures RSS (Resident Set Size) includes both the memory which is unique to the process and the memory shared with other processes. It is important to note that it does not include swapped out memory, so the reports could be imprecise. The CPU peak memory is measured using a sampling thread. Due to python's GIL it may miss some of the peak memory if that thread didn't get a chance to run when the highest memory was used. Therefore this report can be less than reality. Using `tracemalloc` would have reported the exact peak memory, but it doesn't report memory allocations outside of python. So if some C++ CUDA extension allocated its own memory it won't be reported. And therefore it was dropped in favor of the memory sampling approach, which reads the current process memory usage. The GPU allocated and peak memory reporting is done with `torch.cuda.memory_allocated()` and `torch.cuda.max_memory_allocated()`. This metric reports only "deltas" for pytorch-specific allocations, as `torch.cuda` memory management system doesn't track any memory allocated outside of pytorch. For example, the very first cuda call typically loads CUDA kernels, which may take from 0.5 to 2GB of GPU memory. Note that this tracker doesn't account for memory allocations outside of [`Trainer`]'s `__init__`, `train`, `evaluate` and `predict` calls. Because `evaluation` calls may happen during `train`, we can't handle nested invocations because `torch.cuda.max_memory_allocated` is a single counter, so if it gets reset by a nested eval call, `train`'s tracker will report incorrect info. If this [pytorch issue](https://github.com/pytorch/pytorch/issues/16266) gets resolved it will be possible to change this class to be re-entrant. Until then we will only track the outer level of `train`, `evaluate` and `predict` methods. Which means that if `eval` is called during `train`, it's the latter that will account for its memory usage and that of the former. This also means that if any other tool that is used along the [`Trainer`] calls `torch.cuda.reset_peak_memory_stats`, the gpu peak memory stats could be invalid. And the [`Trainer`] will disrupt the normal behavior of any such tools that rely on calling `torch.cuda.reset_peak_memory_stats` themselves. For best performance you may want to consider turning the memory profiling off for production runs. """ if not self.is_world_process_zero(): return print(f"***** {split} metrics *****") metrics_formatted = self.metrics_format(metrics) k_width = max(len(str(x)) for x in metrics_formatted.keys()) v_width = max(len(str(x)) for x in metrics_formatted.values()) for key in sorted(metrics_formatted.keys()): print(f" {key: <{k_width}} = {metrics_formatted[key]:>{v_width}}") def save_metrics(self, split, metrics, combined=True): """ Save metrics into a json file for that split, e.g. `train_results.json`. Under distributed environment this is done only for a process with rank 0. Args: split (`str`): Mode/split name: one of `train`, `eval`, `test`, `all` metrics (`Dict[str, float]`): The metrics returned from train/evaluate/predict combined (`bool`, *optional*, defaults to `True`): Creates combined metrics by updating `all_results.json` with metrics of this call To understand the metrics please read the docstring of [`~Trainer.log_metrics`]. The only difference is that raw unformatted numbers are saved in the current method. """ if not self.is_world_process_zero(): return path = os.path.join(self.args.output_dir, f"{split}_results.json") with open(path, "w") as f: json.dump(metrics, f, indent=4, sort_keys=True) if combined: path = os.path.join(self.args.output_dir, "all_results.json") if os.path.exists(path): with open(path, "r") as f: all_metrics = json.load(f) else: all_metrics = {} all_metrics.update(metrics) with open(path, "w") as f: json.dump(all_metrics, f, indent=4, sort_keys=True) def save_state(self): """ Saves the Trainer state, since Trainer.save_model saves only the tokenizer with the model Under distributed environment this is done only for a process with rank 0. """ if not self.is_world_process_zero(): return path = os.path.join(self.args.output_dir, "trainer_state.json") self.state.save_to_json(path) def get_model_param_count(model, trainable_only=False): """ Calculate model's total param count. If trainable_only is True then count only those requiring grads """ if is_deepspeed_zero3_enabled(): def numel(p): return p.ds_numel if hasattr(p, "ds_numel") else p.numel() else: def numel(p): return p.numel() return sum(numel(p) for p in model.parameters() if not trainable_only or p.requires_grad) def get_parameter_names(model, forbidden_layer_types): """ Returns the names of the model parameters that are not inside a forbidden layer. """ result = [] for name, child in model.named_children(): result += [ f"{name}.{n}" for n in get_parameter_names(child, forbidden_layer_types) if not isinstance(child, tuple(forbidden_layer_types)) ] # Add model specific parameters (defined with nn.Parameter) since they are not in any child. result += list(model._parameters.keys()) return result def get_module_class_from_name(module, name): """ Gets a class from a module by its name. Args: module (`torch.nn.Module`): The module to get the class from. name (`str`): The name of the class. """ modules_children = list(module.children()) if module.__class__.__name__ == name: return module.__class__ elif len(modules_children) == 0: return else: for child_module in modules_children: module_class = get_module_class_from_name(child_module, name) if module_class is not None: return module_class def remove_dummy_checkpoint(is_main_process, output_dir, filenames): if is_main_process: for filename in filenames: file = os.path.join(output_dir, filename) if os.path.isfile(file): os.remove(file) if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp @smp.step() def smp_forward_backward(model, inputs, gradient_accumulation_steps=1): outputs = model(**inputs) loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] loss /= gradient_accumulation_steps model.backward(loss) return loss @smp.step() def smp_forward_only(model, inputs): return model(**inputs) def smp_gather(tensor): if isinstance(tensor, (list, tuple)): return type(tensor)(smp_gather(t) for t in tensor) elif isinstance(tensor, dict): return type(tensor)({k: smp_gather(v) for k, v in tensor.items()}) elif not isinstance(tensor, torch.Tensor): raise TypeError( f"Can't gather the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors." ) all_tensors = smp.allgather(tensor, smp.CommGroup.DP_GROUP) all_tensors = [atleast_1d(t) for t in all_tensors] return torch.cat([t.cpu() for t in all_tensors], dim=0) def smp_nested_concat(tensor): if isinstance(tensor, (list, tuple)): return type(tensor)(smp_nested_concat(t) for t in tensor) elif isinstance(tensor, dict): return type(tensor)({k: smp_nested_concat(v) for k, v in tensor.items()}) # It doesn't seem possible to check here if `tensor` is a StepOutput because StepOutput lives in `smp.step` # which is also the name of the decorator so Python is confused. return tensor.concat().detach().cpu() @dataclass class AcceleratorConfig: """ A subset of arguments relating to the underlying [`accelerate.Accelerator`] implementation utilized in the `Trainer` that can be customized. Mostly relating to data. Parameters: split_batches (`bool`, *optional*, defaults to `False`): Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set in your script multiplied by the number of processes. dispatch_batches (`bool`, *optional*): If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose underlying dataset is an `IterableDataset`, `False` otherwise. even_batches (`bool`, *optional*, defaults to `True`): If set to `True`, in cases where the total batch size across all processes does not exactly divide the dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among all workers. use_seedable_sampler (`bool`, *optional*, defaults to `True`): Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`]). Ensures training results are fully reproducable using a different sampling technique. While seed-to-seed results may differ, on average the differences are neglible when using multiple different seeds to compare. Should also be ran with [`~utils.set_seed`] for the best results. gradient_accumulation_kwargs (`dict`, *optional*): Additional kwargs to configure gradient accumulation, see [`accelerate.utils.GradientAccumulationPlugin`]. Any of the following (optional) keys are acceptable: num_steps (`int`): Will take precedence over [`~.TrainingArguments.gradient_accumulation_steps`] if the latter is set to 1, otherwise an exception will be raised. adjust_scheduler (`bool`): Whether to adjust the scheduler steps to account for [`~.TrainingArguments.gradient_accumulation_steps`]. The [`accelerate.utils.GradientAccumulationPlugin`] default is `True`. sync_each_batch (`bool`): Whether to synchronize the gradients at each data batch. The [`accelerate.utils.GradientAccumulationPlugin`] default is `False`. """ # Data related arguments split_batches: bool = field( default=False, metadata={ "help": "Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If" " `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a" " round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set" " in your script multiplied by the number of processes." }, ) dispatch_batches: bool = field( default=None, metadata={ "help": "If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process" " and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose" " underlying dataset is an `IterableDataslet`, `False` otherwise." }, ) even_batches: bool = field( default=True, metadata={ "help": "If set to `True`, in cases where the total batch size across all processes does not exactly divide the" " dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among" " all workers." }, ) use_seedable_sampler: bool = field( default=True, metadata={ "help": "Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`])." "Ensures training results are fully reproducable using a different sampling technique. " "While seed-to-seed results may differ, on average the differences are neglible when using" "multiple different seeds to compare. Should also be ran with [`~utils.set_seed`] for the best results." }, ) gradient_accumulation_kwargs: Optional[Dict] = field( default=None, metadata={ "help": "Additional kwargs to configure gradient accumulation, see [`accelerate.utils.GradientAccumulationPlugin`]. " "Any of the following (optional) keys are acceptable: " " num_steps (`int`): Will take precedence over [`~.TrainingArguments.gradient_accumulation_steps`] if " " the latter is set to 1, otherwise an exception will be raised. " " adjust_scheduler (`bool`): Whether to adjust the scheduler steps to account for [`~.TrainingArguments.gradient_accumulation_steps`]. " " The [`accelerate.utils.GradientAccumulationPlugin`] default is `True`. " " sync_each_batch (`bool`): Whether to synchronize the gradients at each data batch. " " The [`accelerate.utils.GradientAccumulationPlugin`] default is `False`." }, ) @classmethod def from_json_file(cls, json_file): # Check if exists open_file = io.open if os.path.exists(json_file) else open with open_file(json_file, "r", encoding="utf-8") as f: config_dict = json.load(f) # Check for keys and load sensible defaults extra_keys = sorted(key for key in config_dict.keys() if key not in cls.__dataclass_fields__.keys()) if len(extra_keys) > 0: raise ValueError( f"The config file at {json_file} had unknown keys ({extra_keys}), please try upgrading your `transformers`" " version or fix (and potentially remove these keys) from your config file." ) return cls(**config_dict) def to_dict(self): return copy.deepcopy(self.__dict__) class LayerWiseDummyOptimizer(torch.optim.Optimizer): """ For Layer-wise optimizers such as GaLoRE optimizer, the optimization step is already done through the post gradient hooks. Therefore the trick is to create a dummy optimizer that can take arbitrary args and kwargs and return a no-op during training. Initial idea from @hiyouga in LLaMA-Factory: https://github.com/hiyouga/LLaMA-Factory/commit/8664262cde3919e10eaecbd66e8c5d356856362e#diff-ebe08ab14496dfb9e06075f0fdd36799ef6d1535cc4dd4715b74c4e3e06fe3ba """ def __init__(self, optimizer_dict=None, *args, **kwargs): dummy_tensor = torch.randn(1, 1) self.optimizer_dict = optimizer_dict super().__init__([dummy_tensor], {"lr": kwargs.get("lr", 1e-03)}) def zero_grad(self, set_to_none: bool = True) -> None: pass def step(self, closure=None) -> Optional[float]: pass class LayerWiseDummyScheduler(LRScheduler): """ For Layer-wise optimizers such as GaLoRE optimizer, the optimization and scheduling step are already done through the post gradient hooks. Therefore the trick is to create a dummy scheduler that can take arbitrary args and kwargs and return a no-op during training. """ def __init__(self, *args, **kwargs): optimizer = LayerWiseDummyOptimizer() last_epoch = -1 verbose = False super().__init__(optimizer, last_epoch, verbose) def get_lr(self): return [group["lr"] for group in self.optimizer.param_groups] def _get_closed_form_lr(self): return self.base_lrs