161 lines
5.3 KiB
Python
161 lines
5.3 KiB
Python
import contextlib
|
|
import functools
|
|
import hashlib
|
|
import logging
|
|
import os
|
|
|
|
import requests
|
|
import torch
|
|
import tqdm
|
|
|
|
from TTS.tts.layers.bark.model import GPT, GPTConfig
|
|
from TTS.tts.layers.bark.model_fine import FineGPT, FineGPTConfig
|
|
|
|
if (
|
|
torch.cuda.is_available()
|
|
and hasattr(torch.cuda, "amp")
|
|
and hasattr(torch.cuda.amp, "autocast")
|
|
and torch.cuda.is_bf16_supported()
|
|
):
|
|
autocast = functools.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
|
|
else:
|
|
|
|
@contextlib.contextmanager
|
|
def autocast():
|
|
yield
|
|
|
|
|
|
# hold models in global scope to lazy load
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
|
logger.warning(
|
|
"torch version does not support flash attention. You will get significantly faster"
|
|
+ " inference speed by upgrade torch to newest version / nightly."
|
|
)
|
|
|
|
|
|
def _md5(fname):
|
|
hash_md5 = hashlib.md5()
|
|
with open(fname, "rb") as f:
|
|
for chunk in iter(lambda: f.read(4096), b""):
|
|
hash_md5.update(chunk)
|
|
return hash_md5.hexdigest()
|
|
|
|
|
|
def _download(from_s3_path, to_local_path, CACHE_DIR):
|
|
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
response = requests.get(from_s3_path, stream=True)
|
|
total_size_in_bytes = int(response.headers.get("content-length", 0))
|
|
block_size = 1024 # 1 Kibibyte
|
|
progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
|
|
with open(to_local_path, "wb") as file:
|
|
for data in response.iter_content(block_size):
|
|
progress_bar.update(len(data))
|
|
file.write(data)
|
|
progress_bar.close()
|
|
if total_size_in_bytes not in [0, progress_bar.n]:
|
|
raise ValueError("ERROR, something went wrong")
|
|
|
|
|
|
class InferenceContext:
|
|
def __init__(self, benchmark=False):
|
|
# we can't expect inputs to be the same length, so disable benchmarking by default
|
|
self._chosen_cudnn_benchmark = benchmark
|
|
self._cudnn_benchmark = None
|
|
|
|
def __enter__(self):
|
|
self._cudnn_benchmark = torch.backends.cudnn.benchmark
|
|
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
|
|
|
|
def __exit__(self, exc_type, exc_value, exc_traceback):
|
|
torch.backends.cudnn.benchmark = self._cudnn_benchmark
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def inference_mode():
|
|
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
|
|
yield
|
|
|
|
|
|
def clear_cuda_cache():
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
def load_model(ckpt_path, device, config, model_type="text"):
|
|
logger.info(f"loading {model_type} model from {ckpt_path}...")
|
|
|
|
if device == "cpu":
|
|
logger.warning("No GPU being used. Careful, Inference might be extremely slow!")
|
|
if model_type == "text":
|
|
ConfigClass = GPTConfig
|
|
ModelClass = GPT
|
|
elif model_type == "coarse":
|
|
ConfigClass = GPTConfig
|
|
ModelClass = GPT
|
|
elif model_type == "fine":
|
|
ConfigClass = FineGPTConfig
|
|
ModelClass = FineGPT
|
|
else:
|
|
raise NotImplementedError()
|
|
if (
|
|
not config.USE_SMALLER_MODELS
|
|
and os.path.exists(ckpt_path)
|
|
and _md5(ckpt_path) != config.REMOTE_MODEL_PATHS[model_type]["checksum"]
|
|
):
|
|
logger.warning(f"found outdated {model_type} model, removing...")
|
|
os.remove(ckpt_path)
|
|
if not os.path.exists(ckpt_path):
|
|
logger.info(f"{model_type} model not found, downloading...")
|
|
_download(config.REMOTE_MODEL_PATHS[model_type]["path"], ckpt_path, config.CACHE_DIR)
|
|
|
|
checkpoint = torch.load(ckpt_path, map_location=device)
|
|
# this is a hack
|
|
model_args = checkpoint["model_args"]
|
|
if "input_vocab_size" not in model_args:
|
|
model_args["input_vocab_size"] = model_args["vocab_size"]
|
|
model_args["output_vocab_size"] = model_args["vocab_size"]
|
|
del model_args["vocab_size"]
|
|
|
|
gptconf = ConfigClass(**checkpoint["model_args"])
|
|
if model_type == "text":
|
|
config.semantic_config = gptconf
|
|
elif model_type == "coarse":
|
|
config.coarse_config = gptconf
|
|
elif model_type == "fine":
|
|
config.fine_config = gptconf
|
|
|
|
model = ModelClass(gptconf)
|
|
state_dict = checkpoint["model"]
|
|
# fixup checkpoint
|
|
unwanted_prefix = "_orig_mod."
|
|
for k, _ in list(state_dict.items()):
|
|
if k.startswith(unwanted_prefix):
|
|
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
|
|
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
|
|
extra_keys = set(k for k in extra_keys if not k.endswith(".attn.bias"))
|
|
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
|
|
missing_keys = set(k for k in missing_keys if not k.endswith(".attn.bias"))
|
|
if len(extra_keys) != 0:
|
|
raise ValueError(f"extra keys found: {extra_keys}")
|
|
if len(missing_keys) != 0:
|
|
raise ValueError(f"missing keys: {missing_keys}")
|
|
model.load_state_dict(state_dict, strict=False)
|
|
n_params = model.get_num_params()
|
|
val_loss = checkpoint["best_val_loss"].item()
|
|
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
|
|
model.eval()
|
|
model.to(device)
|
|
del checkpoint, state_dict
|
|
clear_cuda_cache()
|
|
return model, config
|