177 lines
6.8 KiB
Python
177 lines
6.8 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn.utils import parametrize
|
|
|
|
|
|
@torch.jit.script
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
n_channels_int = n_channels[0]
|
|
in_act = input_a + input_b
|
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
acts = t_act * s_act
|
|
return acts
|
|
|
|
|
|
class WN(torch.nn.Module):
|
|
"""Wavenet layers with weight norm and no input conditioning.
|
|
|
|
|-----------------------------------------------------------------------------|
|
|
| |-> tanh -| |
|
|
res -|- conv1d(dilation) -> dropout -> + -| * -> conv1d1x1 -> split -|- + -> res
|
|
g -------------------------------------| |-> sigmoid -| |
|
|
o --------------------------------------------------------------------------- + --------- o
|
|
|
|
Args:
|
|
in_channels (int): number of input channels.
|
|
hidden_channes (int): number of hidden channels.
|
|
kernel_size (int): filter kernel size for the first conv layer.
|
|
dilation_rate (int): dilations rate to increase dilation per layer.
|
|
If it is 2, dilations are 1, 2, 4, 8 for the next 4 layers.
|
|
num_layers (int): number of wavenet layers.
|
|
c_in_channels (int): number of channels of conditioning input.
|
|
dropout_p (float): dropout rate.
|
|
weight_norm (bool): enable/disable weight norm for convolution layers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
num_layers,
|
|
c_in_channels=0,
|
|
dropout_p=0,
|
|
weight_norm=True,
|
|
):
|
|
super().__init__()
|
|
assert kernel_size % 2 == 1
|
|
assert hidden_channels % 2 == 0
|
|
self.in_channels = in_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.num_layers = num_layers
|
|
self.c_in_channels = c_in_channels
|
|
self.dropout_p = dropout_p
|
|
|
|
self.in_layers = torch.nn.ModuleList()
|
|
self.res_skip_layers = torch.nn.ModuleList()
|
|
self.dropout = nn.Dropout(dropout_p)
|
|
|
|
# init conditioning layer
|
|
if c_in_channels > 0:
|
|
cond_layer = torch.nn.Conv1d(c_in_channels, 2 * hidden_channels * num_layers, 1)
|
|
self.cond_layer = torch.nn.utils.parametrizations.weight_norm(cond_layer, name="weight")
|
|
# intermediate layers
|
|
for i in range(num_layers):
|
|
dilation = dilation_rate**i
|
|
padding = int((kernel_size * dilation - dilation) / 2)
|
|
if i == 0:
|
|
in_layer = torch.nn.Conv1d(
|
|
in_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding
|
|
)
|
|
else:
|
|
in_layer = torch.nn.Conv1d(
|
|
hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding
|
|
)
|
|
in_layer = torch.nn.utils.parametrizations.weight_norm(in_layer, name="weight")
|
|
self.in_layers.append(in_layer)
|
|
|
|
if i < num_layers - 1:
|
|
res_skip_channels = 2 * hidden_channels
|
|
else:
|
|
res_skip_channels = hidden_channels
|
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
|
res_skip_layer = torch.nn.utils.parametrizations.weight_norm(res_skip_layer, name="weight")
|
|
self.res_skip_layers.append(res_skip_layer)
|
|
# setup weight norm
|
|
if not weight_norm:
|
|
self.remove_weight_norm()
|
|
|
|
def forward(self, x, x_mask=None, g=None, **kwargs): # pylint: disable=unused-argument
|
|
output = torch.zeros_like(x)
|
|
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
|
x_mask = 1.0 if x_mask is None else x_mask
|
|
if g is not None:
|
|
g = self.cond_layer(g)
|
|
for i in range(self.num_layers):
|
|
x_in = self.in_layers[i](x)
|
|
x_in = self.dropout(x_in)
|
|
if g is not None:
|
|
cond_offset = i * 2 * self.hidden_channels
|
|
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
|
else:
|
|
g_l = torch.zeros_like(x_in)
|
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
|
res_skip_acts = self.res_skip_layers[i](acts)
|
|
if i < self.num_layers - 1:
|
|
x = (x + res_skip_acts[:, : self.hidden_channels, :]) * x_mask
|
|
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
|
else:
|
|
output = output + res_skip_acts
|
|
return output * x_mask
|
|
|
|
def remove_weight_norm(self):
|
|
if self.c_in_channels != 0:
|
|
parametrize.remove_parametrizations(self.cond_layer, "weight")
|
|
for l in self.in_layers:
|
|
parametrize.remove_parametrizations(l, "weight")
|
|
for l in self.res_skip_layers:
|
|
parametrize.remove_parametrizations(l, "weight")
|
|
|
|
|
|
class WNBlocks(nn.Module):
|
|
"""Wavenet blocks.
|
|
|
|
Note: After each block dilation resets to 1 and it increases in each block
|
|
along the dilation rate.
|
|
|
|
Args:
|
|
in_channels (int): number of input channels.
|
|
hidden_channes (int): number of hidden channels.
|
|
kernel_size (int): filter kernel size for the first conv layer.
|
|
dilation_rate (int): dilations rate to increase dilation per layer.
|
|
If it is 2, dilations are 1, 2, 4, 8 for the next 4 layers.
|
|
num_blocks (int): number of wavenet blocks.
|
|
num_layers (int): number of wavenet layers.
|
|
c_in_channels (int): number of channels of conditioning input.
|
|
dropout_p (float): dropout rate.
|
|
weight_norm (bool): enable/disable weight norm for convolution layers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
num_blocks,
|
|
num_layers,
|
|
c_in_channels=0,
|
|
dropout_p=0,
|
|
weight_norm=True,
|
|
):
|
|
super().__init__()
|
|
self.wn_blocks = nn.ModuleList()
|
|
for idx in range(num_blocks):
|
|
layer = WN(
|
|
in_channels=in_channels if idx == 0 else hidden_channels,
|
|
hidden_channels=hidden_channels,
|
|
kernel_size=kernel_size,
|
|
dilation_rate=dilation_rate,
|
|
num_layers=num_layers,
|
|
c_in_channels=c_in_channels,
|
|
dropout_p=dropout_p,
|
|
weight_norm=weight_norm,
|
|
)
|
|
self.wn_blocks.append(layer)
|
|
|
|
def forward(self, x, x_mask=None, g=None):
|
|
o = x
|
|
for layer in self.wn_blocks:
|
|
o = layer(o, x_mask, g)
|
|
return o
|