47 lines
2.1 KiB
Python
47 lines
2.1 KiB
Python
import os
|
|
from urllib import request
|
|
|
|
from tqdm import tqdm
|
|
|
|
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser("~"), ".cache", "tortoise", "models")
|
|
MODELS_DIR = os.environ.get("TORTOISE_MODELS_DIR", DEFAULT_MODELS_DIR)
|
|
MODELS_DIR = "/data/speech_synth/models/"
|
|
MODELS = {
|
|
"autoregressive.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth",
|
|
"classifier.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth",
|
|
"clvp2.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth",
|
|
"diffusion_decoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth",
|
|
"vocoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth",
|
|
"rlg_auto.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth",
|
|
"rlg_diffuser.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth",
|
|
}
|
|
|
|
|
|
def download_models(specific_models=None):
|
|
"""
|
|
Call to download all the models that Tortoise uses.
|
|
"""
|
|
os.makedirs(MODELS_DIR, exist_ok=True)
|
|
for model_name, url in MODELS.items():
|
|
if specific_models is not None and model_name not in specific_models:
|
|
continue
|
|
model_path = os.path.join(MODELS_DIR, model_name)
|
|
if os.path.exists(model_path):
|
|
continue
|
|
print(f"Downloading {model_name} from {url}...")
|
|
with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1) as t:
|
|
request.urlretrieve(url, model_path, lambda nb, bs, fs, t=t: t.update(nb * bs - t.n))
|
|
print("Done.")
|
|
|
|
|
|
def get_model_path(model_name, models_dir=MODELS_DIR):
|
|
"""
|
|
Get path to given model, download it if it doesn't exist.
|
|
"""
|
|
if model_name not in MODELS:
|
|
raise ValueError(f"Model {model_name} not found in available models.")
|
|
model_path = os.path.join(models_dir, model_name)
|
|
if not os.path.exists(model_path) and models_dir == MODELS_DIR:
|
|
download_models([model_name])
|
|
return model_path
|