733 lines
24 KiB
Python
733 lines
24 KiB
Python
import torch
|
|
import torchaudio
|
|
from torch import nn
|
|
from torch.nn import Conv1d, ConvTranspose1d
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils.parametrizations import weight_norm
|
|
from torch.nn.utils.parametrize import remove_parametrizations
|
|
|
|
from TTS.utils.io import load_fsspec
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
def get_padding(k, d):
|
|
return int((k * d - d) / 2)
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block.
|
|
|
|
Network::
|
|
|
|
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o
|
|
|--------------------------------------------------------------------------------------------------|
|
|
|
|
|
|
Args:
|
|
channels (int): number of hidden channels for the convolutional layers.
|
|
kernel_size (int): size of the convolution filter in each layer.
|
|
dilations (list): list of dilation value for each conv layer in a block.
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
super().__init__()
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x (Tensor): input tensor.
|
|
Returns:
|
|
Tensor: output tensor.
|
|
Shapes:
|
|
x: [B, C, T]
|
|
"""
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_parametrizations(l, "weight")
|
|
for l in self.convs2:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block.
|
|
|
|
Network::
|
|
|
|
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o
|
|
|---------------------------------------------------|
|
|
|
|
|
|
Args:
|
|
channels (int): number of hidden channels for the convolutional layers.
|
|
kernel_size (int): size of the convolution filter in each layer.
|
|
dilations (list): list of dilation value for each conv layer in a block.
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class HifiganGenerator(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
resblock_type,
|
|
resblock_dilation_sizes,
|
|
resblock_kernel_sizes,
|
|
upsample_kernel_sizes,
|
|
upsample_initial_channel,
|
|
upsample_factors,
|
|
inference_padding=5,
|
|
cond_channels=0,
|
|
conv_pre_weight_norm=True,
|
|
conv_post_weight_norm=True,
|
|
conv_post_bias=True,
|
|
cond_in_each_up_layer=False,
|
|
):
|
|
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
|
|
|
Network:
|
|
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o
|
|
.. -> zI ---|
|
|
resblockN_kNx1 -> zN ---'
|
|
|
|
Args:
|
|
in_channels (int): number of input tensor channels.
|
|
out_channels (int): number of output tensor channels.
|
|
resblock_type (str): type of the `ResBlock`. '1' or '2'.
|
|
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`.
|
|
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`.
|
|
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution.
|
|
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2
|
|
for each consecutive upsampling layer.
|
|
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer.
|
|
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5.
|
|
"""
|
|
super().__init__()
|
|
self.inference_padding = inference_padding
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_factors)
|
|
self.cond_in_each_up_layer = cond_in_each_up_layer
|
|
|
|
# initial upsampling layers
|
|
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
|
|
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
|
# upsampling layers
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
upsample_initial_channel // (2**i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
# MRF blocks
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
# post convolution layer
|
|
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias))
|
|
if cond_channels > 0:
|
|
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1)
|
|
|
|
if not conv_pre_weight_norm:
|
|
remove_parametrizations(self.conv_pre, "weight")
|
|
|
|
if not conv_post_weight_norm:
|
|
remove_parametrizations(self.conv_post, "weight")
|
|
|
|
if self.cond_in_each_up_layer:
|
|
self.conds = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
self.conds.append(nn.Conv1d(cond_channels, ch, 1))
|
|
|
|
def forward(self, x, g=None):
|
|
"""
|
|
Args:
|
|
x (Tensor): feature input tensor.
|
|
g (Tensor): global conditioning input tensor.
|
|
|
|
Returns:
|
|
Tensor: output waveform.
|
|
|
|
Shapes:
|
|
x: [B, C, T]
|
|
Tensor: [B, 1, T]
|
|
"""
|
|
o = self.conv_pre(x)
|
|
if hasattr(self, "cond_layer"):
|
|
o = o + self.cond_layer(g)
|
|
for i in range(self.num_upsamples):
|
|
o = F.leaky_relu(o, LRELU_SLOPE)
|
|
o = self.ups[i](o)
|
|
|
|
if self.cond_in_each_up_layer:
|
|
o = o + self.conds[i](g)
|
|
|
|
z_sum = None
|
|
for j in range(self.num_kernels):
|
|
if z_sum is None:
|
|
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
|
else:
|
|
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
|
o = z_sum / self.num_kernels
|
|
o = F.leaky_relu(o)
|
|
o = self.conv_post(o)
|
|
o = torch.tanh(o)
|
|
return o
|
|
|
|
@torch.no_grad()
|
|
def inference(self, c):
|
|
"""
|
|
Args:
|
|
x (Tensor): conditioning input tensor.
|
|
|
|
Returns:
|
|
Tensor: output waveform.
|
|
|
|
Shapes:
|
|
x: [B, C, T]
|
|
Tensor: [B, 1, T]
|
|
"""
|
|
c = c.to(self.conv_pre.weight.device)
|
|
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate")
|
|
return self.forward(c)
|
|
|
|
def remove_weight_norm(self):
|
|
print("Removing weight norm...")
|
|
for l in self.ups:
|
|
remove_parametrizations(l, "weight")
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
remove_parametrizations(self.conv_pre, "weight")
|
|
remove_parametrizations(self.conv_post, "weight")
|
|
|
|
def load_checkpoint(
|
|
self, config, checkpoint_path, eval=False, cache=False
|
|
): # pylint: disable=unused-argument, redefined-builtin
|
|
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
|
self.load_state_dict(state["model"])
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|
|
self.remove_weight_norm()
|
|
|
|
|
|
class SELayer(nn.Module):
|
|
def __init__(self, channel, reduction=8):
|
|
super(SELayer, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(channel, channel // reduction),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(channel // reduction, channel),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, x):
|
|
b, c, _, _ = x.size()
|
|
y = self.avg_pool(x).view(b, c)
|
|
y = self.fc(y).view(b, c, 1, 1)
|
|
return x * y
|
|
|
|
|
|
class SEBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
|
|
super(SEBasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.se = SELayer(planes, reduction)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.relu(out)
|
|
out = self.bn1(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.se(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
def set_init_dict(model_dict, checkpoint_state, c):
|
|
# Partial initialization: if there is a mismatch with new and old layer, it is skipped.
|
|
for k, v in checkpoint_state.items():
|
|
if k not in model_dict:
|
|
print(" | > Layer missing in the model definition: {}".format(k))
|
|
# 1. filter out unnecessary keys
|
|
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
|
|
# 2. filter out different size layers
|
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
|
|
# 3. skip reinit layers
|
|
if c.has("reinit_layers") and c.reinit_layers is not None:
|
|
for reinit_layer_name in c.reinit_layers:
|
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k}
|
|
# 4. overwrite entries in the existing state dict
|
|
model_dict.update(pretrained_dict)
|
|
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
|
|
return model_dict
|
|
|
|
|
|
class PreEmphasis(nn.Module):
|
|
def __init__(self, coefficient=0.97):
|
|
super().__init__()
|
|
self.coefficient = coefficient
|
|
self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0))
|
|
|
|
def forward(self, x):
|
|
assert len(x.size()) == 2
|
|
|
|
x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect")
|
|
return torch.nn.functional.conv1d(x, self.filter).squeeze(1)
|
|
|
|
|
|
class ResNetSpeakerEncoder(nn.Module):
|
|
"""This is copied from 🐸TTS to remove it from the dependencies."""
|
|
|
|
# pylint: disable=W0102
|
|
def __init__(
|
|
self,
|
|
input_dim=64,
|
|
proj_dim=512,
|
|
layers=[3, 4, 6, 3],
|
|
num_filters=[32, 64, 128, 256],
|
|
encoder_type="ASP",
|
|
log_input=False,
|
|
use_torch_spec=False,
|
|
audio_config=None,
|
|
):
|
|
super(ResNetSpeakerEncoder, self).__init__()
|
|
|
|
self.encoder_type = encoder_type
|
|
self.input_dim = input_dim
|
|
self.log_input = log_input
|
|
self.use_torch_spec = use_torch_spec
|
|
self.audio_config = audio_config
|
|
self.proj_dim = proj_dim
|
|
|
|
self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.bn1 = nn.BatchNorm2d(num_filters[0])
|
|
|
|
self.inplanes = num_filters[0]
|
|
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0])
|
|
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2))
|
|
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2))
|
|
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2))
|
|
|
|
self.instancenorm = nn.InstanceNorm1d(input_dim)
|
|
|
|
if self.use_torch_spec:
|
|
self.torch_spec = torch.nn.Sequential(
|
|
PreEmphasis(audio_config["preemphasis"]),
|
|
torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=audio_config["sample_rate"],
|
|
n_fft=audio_config["fft_size"],
|
|
win_length=audio_config["win_length"],
|
|
hop_length=audio_config["hop_length"],
|
|
window_fn=torch.hamming_window,
|
|
n_mels=audio_config["num_mels"],
|
|
),
|
|
)
|
|
|
|
else:
|
|
self.torch_spec = None
|
|
|
|
outmap_size = int(self.input_dim / 8)
|
|
|
|
self.attention = nn.Sequential(
|
|
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
|
|
nn.ReLU(),
|
|
nn.BatchNorm1d(128),
|
|
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
|
|
nn.Softmax(dim=2),
|
|
)
|
|
|
|
if self.encoder_type == "SAP":
|
|
out_dim = num_filters[3] * outmap_size
|
|
elif self.encoder_type == "ASP":
|
|
out_dim = num_filters[3] * outmap_size * 2
|
|
else:
|
|
raise ValueError("Undefined encoder")
|
|
|
|
self.fc = nn.Linear(out_dim, proj_dim)
|
|
|
|
self._init_layers()
|
|
|
|
def _init_layers(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def create_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
# pylint: disable=R0201
|
|
def new_parameter(self, *size):
|
|
out = nn.Parameter(torch.FloatTensor(*size))
|
|
nn.init.xavier_normal_(out)
|
|
return out
|
|
|
|
def forward(self, x, l2_norm=False):
|
|
"""Forward pass of the model.
|
|
|
|
Args:
|
|
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`
|
|
to compute the spectrogram on-the-fly.
|
|
l2_norm (bool): Whether to L2-normalize the outputs.
|
|
|
|
Shapes:
|
|
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`
|
|
"""
|
|
x.squeeze_(1)
|
|
# if you torch spec compute it otherwise use the mel spec computed by the AP
|
|
if self.use_torch_spec:
|
|
x = self.torch_spec(x)
|
|
|
|
if self.log_input:
|
|
x = (x + 1e-6).log()
|
|
x = self.instancenorm(x).unsqueeze(1)
|
|
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.bn1(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
x = x.reshape(x.size()[0], -1, x.size()[-1])
|
|
|
|
w = self.attention(x)
|
|
|
|
if self.encoder_type == "SAP":
|
|
x = torch.sum(x * w, dim=2)
|
|
elif self.encoder_type == "ASP":
|
|
mu = torch.sum(x * w, dim=2)
|
|
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5))
|
|
x = torch.cat((mu, sg), 1)
|
|
|
|
x = x.view(x.size()[0], -1)
|
|
x = self.fc(x)
|
|
|
|
if l2_norm:
|
|
x = torch.nn.functional.normalize(x, p=2, dim=1)
|
|
return x
|
|
|
|
def load_checkpoint(
|
|
self,
|
|
checkpoint_path: str,
|
|
eval: bool = False,
|
|
use_cuda: bool = False,
|
|
criterion=None,
|
|
cache=False,
|
|
):
|
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
|
|
try:
|
|
self.load_state_dict(state["model"])
|
|
print(" > Model fully restored. ")
|
|
except (KeyError, RuntimeError) as error:
|
|
# If eval raise the error
|
|
if eval:
|
|
raise error
|
|
|
|
print(" > Partial model initialization.")
|
|
model_dict = self.state_dict()
|
|
model_dict = set_init_dict(model_dict, state["model"])
|
|
self.load_state_dict(model_dict)
|
|
del model_dict
|
|
|
|
# load the criterion for restore_path
|
|
if criterion is not None and "criterion" in state:
|
|
try:
|
|
criterion.load_state_dict(state["criterion"])
|
|
except (KeyError, RuntimeError) as error:
|
|
print(" > Criterion load ignored because of:", error)
|
|
|
|
if use_cuda:
|
|
self.cuda()
|
|
if criterion is not None:
|
|
criterion = criterion.cuda()
|
|
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|
|
|
|
if not eval:
|
|
return criterion, state["step"]
|
|
return criterion
|
|
|
|
|
|
class HifiDecoder(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_sample_rate=22050,
|
|
output_sample_rate=24000,
|
|
output_hop_length=256,
|
|
ar_mel_length_compression=1024,
|
|
decoder_input_dim=1024,
|
|
resblock_type_decoder="1",
|
|
resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
resblock_kernel_sizes_decoder=[3, 7, 11],
|
|
upsample_rates_decoder=[8, 8, 2, 2],
|
|
upsample_initial_channel_decoder=512,
|
|
upsample_kernel_sizes_decoder=[16, 16, 4, 4],
|
|
d_vector_dim=512,
|
|
cond_d_vector_in_each_upsampling_layer=True,
|
|
speaker_encoder_audio_config={
|
|
"fft_size": 512,
|
|
"win_length": 400,
|
|
"hop_length": 160,
|
|
"sample_rate": 16000,
|
|
"preemphasis": 0.97,
|
|
"num_mels": 64,
|
|
},
|
|
):
|
|
super().__init__()
|
|
self.input_sample_rate = input_sample_rate
|
|
self.output_sample_rate = output_sample_rate
|
|
self.output_hop_length = output_hop_length
|
|
self.ar_mel_length_compression = ar_mel_length_compression
|
|
self.speaker_encoder_audio_config = speaker_encoder_audio_config
|
|
self.waveform_decoder = HifiganGenerator(
|
|
decoder_input_dim,
|
|
1,
|
|
resblock_type_decoder,
|
|
resblock_dilation_sizes_decoder,
|
|
resblock_kernel_sizes_decoder,
|
|
upsample_kernel_sizes_decoder,
|
|
upsample_initial_channel_decoder,
|
|
upsample_rates_decoder,
|
|
inference_padding=0,
|
|
cond_channels=d_vector_dim,
|
|
conv_pre_weight_norm=False,
|
|
conv_post_weight_norm=False,
|
|
conv_post_bias=False,
|
|
cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer,
|
|
)
|
|
self.speaker_encoder = ResNetSpeakerEncoder(
|
|
input_dim=64,
|
|
proj_dim=512,
|
|
log_input=True,
|
|
use_torch_spec=True,
|
|
audio_config=speaker_encoder_audio_config,
|
|
)
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def forward(self, latents, g=None):
|
|
"""
|
|
Args:
|
|
x (Tensor): feature input tensor (GPT latent).
|
|
g (Tensor): global conditioning input tensor.
|
|
|
|
Returns:
|
|
Tensor: output waveform.
|
|
|
|
Shapes:
|
|
x: [B, C, T]
|
|
Tensor: [B, 1, T]
|
|
"""
|
|
|
|
z = torch.nn.functional.interpolate(
|
|
latents.transpose(1, 2),
|
|
scale_factor=[self.ar_mel_length_compression / self.output_hop_length],
|
|
mode="linear",
|
|
).squeeze(1)
|
|
# upsample to the right sr
|
|
if self.output_sample_rate != self.input_sample_rate:
|
|
z = torch.nn.functional.interpolate(
|
|
z,
|
|
scale_factor=[self.output_sample_rate / self.input_sample_rate],
|
|
mode="linear",
|
|
).squeeze(0)
|
|
o = self.waveform_decoder(z, g=g)
|
|
return o
|
|
|
|
@torch.no_grad()
|
|
def inference(self, c, g):
|
|
"""
|
|
Args:
|
|
x (Tensor): feature input tensor (GPT latent).
|
|
g (Tensor): global conditioning input tensor.
|
|
|
|
Returns:
|
|
Tensor: output waveform.
|
|
|
|
Shapes:
|
|
x: [B, C, T]
|
|
Tensor: [B, 1, T]
|
|
"""
|
|
return self.forward(c, g=g)
|
|
|
|
def load_checkpoint(self, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin
|
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
|
|
# remove unused keys
|
|
state = state["model"]
|
|
states_keys = list(state.keys())
|
|
for key in states_keys:
|
|
if "waveform_decoder." not in key and "speaker_encoder." not in key:
|
|
del state[key]
|
|
|
|
self.load_state_dict(state)
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|
|
self.waveform_decoder.remove_weight_norm()
|