119 lines
4.4 KiB
Python
119 lines
4.4 KiB
Python
import numpy as np
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
from TTS.utils.audio.numpy_transforms import mulaw_encode, quantize
|
|
|
|
|
|
class WaveRNNDataset(Dataset):
|
|
"""
|
|
WaveRNN Dataset searchs for all the wav files under root path
|
|
and converts them to acoustic features on the fly.
|
|
"""
|
|
|
|
def __init__(
|
|
self, ap, items, seq_len, hop_len, pad, mode, mulaw, is_training=True, verbose=False, return_segments=True
|
|
):
|
|
super().__init__()
|
|
self.ap = ap
|
|
self.compute_feat = not isinstance(items[0], (tuple, list))
|
|
self.item_list = items
|
|
self.seq_len = seq_len
|
|
self.hop_len = hop_len
|
|
self.mel_len = seq_len // hop_len
|
|
self.pad = pad
|
|
self.mode = mode
|
|
self.mulaw = mulaw
|
|
self.is_training = is_training
|
|
self.verbose = verbose
|
|
self.return_segments = return_segments
|
|
|
|
assert self.seq_len % self.hop_len == 0
|
|
|
|
def __len__(self):
|
|
return len(self.item_list)
|
|
|
|
def __getitem__(self, index):
|
|
item = self.load_item(index)
|
|
return item
|
|
|
|
def load_test_samples(self, num_samples):
|
|
samples = []
|
|
return_segments = self.return_segments
|
|
self.return_segments = False
|
|
for idx in range(num_samples):
|
|
mel, audio, _ = self.load_item(idx)
|
|
samples.append([mel, audio])
|
|
self.return_segments = return_segments
|
|
return samples
|
|
|
|
def load_item(self, index):
|
|
"""
|
|
load (audio, feat) couple if feature_path is set
|
|
else compute it on the fly
|
|
"""
|
|
if self.compute_feat:
|
|
wavpath = self.item_list[index]
|
|
audio = self.ap.load_wav(wavpath)
|
|
if self.return_segments:
|
|
min_audio_len = 2 * self.seq_len + (2 * self.pad * self.hop_len)
|
|
else:
|
|
min_audio_len = audio.shape[0] + (2 * self.pad * self.hop_len)
|
|
if audio.shape[0] < min_audio_len:
|
|
print(" [!] Instance is too short! : {}".format(wavpath))
|
|
audio = np.pad(audio, [0, min_audio_len - audio.shape[0] + self.hop_len])
|
|
mel = self.ap.melspectrogram(audio)
|
|
|
|
if self.mode in ["gauss", "mold"]:
|
|
x_input = audio
|
|
elif isinstance(self.mode, int):
|
|
x_input = (
|
|
mulaw_encode(wav=audio, mulaw_qc=self.mode)
|
|
if self.mulaw
|
|
else quantize(x=audio, quantize_bits=self.mode)
|
|
)
|
|
else:
|
|
raise RuntimeError("Unknown dataset mode - ", self.mode)
|
|
|
|
else:
|
|
wavpath, feat_path = self.item_list[index]
|
|
mel = np.load(feat_path.replace("/quant/", "/mel/"))
|
|
|
|
if mel.shape[-1] < self.mel_len + 2 * self.pad:
|
|
print(" [!] Instance is too short! : {}".format(wavpath))
|
|
self.item_list[index] = self.item_list[index + 1]
|
|
feat_path = self.item_list[index]
|
|
mel = np.load(feat_path.replace("/quant/", "/mel/"))
|
|
if self.mode in ["gauss", "mold"]:
|
|
x_input = self.ap.load_wav(wavpath)
|
|
elif isinstance(self.mode, int):
|
|
x_input = np.load(feat_path.replace("/mel/", "/quant/"))
|
|
else:
|
|
raise RuntimeError("Unknown dataset mode - ", self.mode)
|
|
|
|
return mel, x_input, wavpath
|
|
|
|
def collate(self, batch):
|
|
mel_win = self.seq_len // self.hop_len + 2 * self.pad
|
|
max_offsets = [x[0].shape[-1] - (mel_win + 2 * self.pad) for x in batch]
|
|
|
|
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
|
|
sig_offsets = [(offset + self.pad) * self.hop_len for offset in mel_offsets]
|
|
|
|
mels = [x[0][:, mel_offsets[i] : mel_offsets[i] + mel_win] for i, x in enumerate(batch)]
|
|
|
|
coarse = [x[1][sig_offsets[i] : sig_offsets[i] + self.seq_len + 1] for i, x in enumerate(batch)]
|
|
|
|
mels = np.stack(mels).astype(np.float32)
|
|
if self.mode in ["gauss", "mold"]:
|
|
coarse = np.stack(coarse).astype(np.float32)
|
|
coarse = torch.FloatTensor(coarse)
|
|
x_input = coarse[:, : self.seq_len]
|
|
elif isinstance(self.mode, int):
|
|
coarse = np.stack(coarse).astype(np.int64)
|
|
coarse = torch.LongTensor(coarse)
|
|
x_input = 2 * coarse[:, : self.seq_len].float() / (2**self.mode - 1.0) - 1.0
|
|
y_coarse = coarse[:, 1:]
|
|
mels = torch.FloatTensor(mels)
|
|
return x_input, mels, y_coarse
|